
The Magma Database file formats

Andrew Gaylard, Brent Pinkney, and Mart-Mari Breedt
Johannesburg, South Africa

15th May 2006

1 Summary

Magma is an open-source object database created by Chris Muller, of Kansas City, U.S.A.
Magma is implemented entirely in Smalltalk. These notes explain the formats of the files
used by Magma to store its data. This information was obtained by reverse-engineering the
Magma source code with Chris Muller’s permission. It is sufficient1 to allow for a clean-room
implementation of reading and writing the raw data files. This work was done using the
version MagmaTester-157 and its dependencies.

2 Background

The core idea behind Magma – and other object databases – is to allow for objects to be
saved to stable storage in a database (“persisted”) and later re-created. In Magma, object
persistence is “transparent”, that is there is no need to explicitly map any object from its
memory representation to its file-based representation. Magma uses Smalltalk’s detailed
class inspection features (“reflection”) to persist objects automatically. It makes use of
lightweight “proxy-objects” to re-create the objects on-demand from the database: when a
proxy-object is “agitated”, that is when any access to it is performed, the proxy-object is
replaced by the dynamically-created real object.

Magma also allows objects to be persisted in collections, which are analogous to tables in
a conventional relational database. These collections may be indexed on one or more given
member-variables to facilitate rapid (that is, better than linear) access.

3 Object identifiers

In Magma, each object is identified by an “object identifier”, abbreviated to OID. In the
revision of Magma used for this work, OIDs are 48 bits wide. They are analogous to pointers
in languages such as C, but exist not only in the computer’s memory, but also in Magma’s
data files. OIDs are central to the way Magma manages its object data. There is a one-to-one
mapping between instances and OIDs.

OIDs are used not only to identify instances. For certain objects which are both small and
frequently-used, the OID not only identifies the object, it also contains the object. This is
possible because 31-bit integers and 32-bit IEEE-754 floating point numbers, among other
classes, fit easily into a 48-bit OID. To make this scheme work, the 48-bit OID-space is
divided into ranges which are set apart for each class of object that can be represented. The

1well, nearly sufficient

1



Table 1: Ranges in OID-space

start of range end of range object
0 0 nil
1 1 false
2 2 true
3 3 Signifies an unused hash index slot
4 4 + 216 − 1 = 65539 DB character set

65540 4 + 216 + 1000 = 66540 Reserved for future use
66541 66541 + 4000000 = 4066541 New-object OIDs; up to four million

and one in a single commit
4066542 248 − 231 − 232 − 1 User objects

248 − 231 − 232 248 − 231 − 1 32-bit IEEE floating point numbers
248 − 231 248 − 1 “Small” (31-bit) integers

details are contained in table 1, which was obtained from the MaOidCalculator Smalltalk
class.

4 The objects.idx file format

0

1

7

13

OID and offset size

offset for OID f + 1 = 4066542

offset for OID f + 2 = 4066543

offset for OID f + 3 = 4066544

array of
further offsets

6

Figure 1: Binary layout of the objects.idx file

This file can be considered to be the master index. It is used to map any given OID to an
offset in the objects file.

The first byte in the file is the OID width in bytes. For this version of Magma, it is always
the value 6. Refer to figure 1.

The rest of the file is an array of offsets, each one OID-width (i.e. 6) bytes wide. Each array
entry corresponds to an OID. The array is offset from the constant firstUserObjectOid in
accordance with the formula

n = o− f − 1

where n is the array entry number, o is the OID in question, and f is the firstUserObjectOid
constant.

Each array entry contains the offset into the objects file where the object corresponding to
this OID can be found. The offset is in little-endian byte-order, as are all other binary data
in Magma. Since the offsets are 48-bit numbers, the objects file is “limited” to a maximum

2



Table 2: Metadata in the objects file header

starting offset size in bytes
signature 0 8

version 8 2
boolean flags 10 1

definition OID 11 8
class definition OID 27 8
anchor object OID 43 8

length of 248 − 1 bytes2.

5 The objects file format

an MaObjectBuffer

an MaObjectBuffer

an MaObjectBuffer

(further MaObjectBuffers)

The Magma objects file header
0

0x400

Figure 2: Binary layout of the objects file

This file is the only place where objects are actually stored. It consists of a 1024-byte header,
and a list of variable-length records. Each record represents one instance. For details, see
figure 2.

The header contains a binary signature, a version number, the definition OID, the class
definition OID, and the anchor object OID. For details, refer to table 2. Note that the OIDs
are 64-bit numbers in this header; some older versions of Magma used 64-bit OIDs, and the
possibility remains of doing so again in the future.

After the header, the objects file is a flat list of variable-length records. Each record repre-
sents one object instance. When a record needs to be updated, it can be updated in-place if
the new size is identical to the old size. If the new size differs3, then a new record is simply
appended to the file’s end, and the offset in the master index is updated to point to the new
record. While this scheme does leave stale objects in the file, it does have some benefits:
appending to a file is a quick operation, and if the system should fail before writing the
offset, the old offset will still point to the old object. Tools also exist for removing stale
records.

2Strictly speaking, the last record in the objects file must start no further than 248 − 1 bytes from the
front of the file. It might extend up to 224 − 7 bytes beyond that limit.

3It’s not clear to me what happens if the new object is smaller than the old one. While the new one
would fit in the space, there would be unused bytes left, and it might be difficult to discover where the next
record started (it would no longer be related to the length field).

3



Each record is one of the five possible types shown in figure 3 (solid lines denote concrete
classes). Magma uses each type of record for persisting certain types of objects; for instance,
strings are always saved as MaByteObjectBuffer records.

MaFixedObjectBuffer MaVariableBuffer

MaVariableObjectBuffer

MaVariableWordBuffer

MaObjectBuffer

MaByteObjectBuffer

MaStorageObjectBuffer

Figure 3: Hierarchy of Magma object record classes

All of these records consist of a size, a control-field, a class ID number, and a class version
number. After the header comes either an array of OIDs (each 48 bits wide, as usual), or
binary data. For details, see figure 4. Note that all numbers, such as the 24-bit size, are
stored in binary, with the MSB first. Since the size field has the OID width (in bytes) added
to it, the maximum size of any instance is 224 − 6 = 16777210 bytes.

The control field maps to the type of object buffer which this record represents. The class ID
is used to identify which class to build when re-creating an object from a record. The
class version allows for classes to evolve over time; each time a class’ structure is changed,
the version number is incremented.

In the case of MaByteObjectBuffer records, the header is followed by binary data. In
the case of MaFixedObjectBuffer and MaVariableObjectBuffer records, the header is an
array of OIDs, which may be “immediate objects” (small integers or 32-bit floats), or may
point to other objects. MaStorageObjectBuffer and MaVariableWordBuffer records were
not unpacked beyond the header fields during this work, and are likely to differ from this
layout.

6 The hash-index (OID-member.hdx) file format

The other files which are part of Magma’s data storage are hash-index files. They allow for
large collections of objects to be searched rapidly. The hash-index files do not themselves
store objects – the objects are stored only in the main objects file. Instead, they store
keys (which are a hashed representation of some member variable), and values, which are
the OIDs. The OIDs in turn allow for the object to be located. Thus, given a value of a
particular member variable, the corresponding OID can be quickly looked up in a hash-index.

Each file is named with the OID of the collection it indexes, and the relevant member-
variable. Each indexed collection has an index storing purely the OIDs it contains, to enable
rapid confirmation that an OID is in a collection. This file is simply named OID.hdx. For
example, a collection which has the OID 456789, indexed on the “foo” member variable,
would thus be stored as two files: 456789.hdx and 456789foo.hdx.

4



0 1 2 3 4 5 6 7

first OID

class version

class ID

size + OID width

control field

98 10 13

98 10 13

second and
subsequent OIDs

String text or binary datah

record header object data (variable length)

,olle

11

11

12

12

Figure 4: Binary layout of a Magma object record

byte 0: key size k in bits - 1

a MaHashIndexRecord

a MaHashIndexRecord

a MaHashIndexRecord

record 0

record 1

record 2

recordSize

(further MaHashIndexRecords)

byte 1: value size in bits - 1

byte 2: number of slots n

Figure 5: The binary format of Magma’s hash-index files

Each hash-index file consists of a three-byte header, and an array of hash-index records, as
shown in figure 5. Each record in turn consists of a header and an array of slots, which may
be unused or may be hash-index record entries. Each entry contains a single key and value
pair. It also contains the number of child entries and a record-number where these may be
found. For details, see figure 6.

6.1 The process of adding records to a hash index file

The process of adding records to a hash index file is best illustrated by means of examples.
We consider 4 scenarios, as depicted in figure 7.

In scenario 1, we have an empty index, consisting of a single record. The hash of the key
can range from 0 to 999 (for simplicity’s sake). We add an item where the key hashes to
777. An entry is created containing the hash and the OID. All the other entries which are
unused will contain a record number of zero and the OID value “3”, both of which reflect
an unused hash index slot.

5



a MaHashIndexRecord

ra
n

ge
st

ar
t

ra
n

ge
en

d

en
tr

y

sl
ot

en
tr

y

an array of size“noOfEntries”

sl
ot

recordSize
keySize/8keySize/8

valueSize/8 keySize/8 keySize/8

no of kidskeyvalue

si
z
e
O

fR
e
c
o
rd

N
u
m

b
e
r

an Entry

rec#

Figure 6: Binary layout of a Magma hash index record

In scenario 2, we start with the index from scenario 1, still consisting of a single record.
We add an item where the key hashes to 744; the existing entry is updated to indicate that
there are two children, one in this entry, and another one in a subsequent record. A new
record is contained to hold entries with keys in the range 700 to 799. A new entry is created
to hold the hash of 777 its and OID. Thus the existing entry is “bumped” down to a new
record when a new entry with a lower hash takes its place. The “record number” field in the
original slot is updated to reflect the record number where further child entries can be found.
Record numbers are zero-based (i.e. the first record in the hash-index after the three-byte
header is number 0).

In scenario 3, we start with the index from scenario 2, now consisting of two records. We add
an item where the key hashes to 721. A new entry is created and added to the second record
since it falls within the record’s range of 700 to 799. Again, the higher-valued hash entry is
bumped down. The first record (i.e. the parent record) gets its numberOfEntriesInteger 4

set accordingly.

In scenario 4, we start with the index from scenario 3, consisting of two records. We add an
item where the key hashes to 745. A new record is created to span the range from 740 to
749. Two new entries are created to hold keys with the hashes 744 and 745, and are added
to the record. This new record’s parent (the second one) has its entry for the range 740 to
749 updated to reflect two child-entries. In turn, that record’s parent (the first one) has its
entry in the range 700 to 799 updated to reflect four child objects.

6.2 Calculations of ranges and slots in the general case

This is, however, not the complete story. Complications arise when a record has a starting
and ending range with fewer integer values than it has slots. Magma’s code calls this a record
with “duplicates”, as a single key value can be stored into several possible slots. Consider
the third record in scenario number 4: its start key is 740 and its end key is 749, giving a
range of 10 integers, which conveniently matches the 10 slots we have available. Since we

4This field may have been renamed to noOfChildren

6



3

2

1

4 721#3

700 799

777#1

770

744#1

749740 779

721#4

700 799

777#1

770

744#2

749740 779

745#1

744#2

700 799

777#1

779770

721#3

700 799

777#1

770

744#1

749740 779

744#2

700 799

777#1

779770

777#1

700 799

777#1

700 799

746745

0-999

0-999

0-999

0-999

700-799

0-999

700-799

0-999

700-799

0-999

700-799

0-999

700-799

740-749

before after

Figure 7: The process of adding records to a hash index file

could continue to add entries with the key 745 (since hash collisions are both possible and
permissible), and since we could elect ab initio to have more than 10 slots per record, it is
clear that further refinement to the process is required.

6.2.1 Adding a new record

Each record’s header contains its range start and range end fields. These values correspond
to the lowest and highest possible keys that this record can hold. When adding a record,
the new lowest possible key ln is calculated from the current record and slot number:

ln = l +
s(h+ 1− l)

n

7



where

s is the zero-based slot number,
n is the number of slots in a hash-index record,
l is the lowest key in the range,
h is the highest key in the range, and
n is the number of slots in each record.

The new highest possible key hn is the same if this record can hold duplicates. Otherwise,
it is

hn = l +
(s+ 1)(h+ 1− l)

n
− 1

6.2.2 Records with no duplicate slots

If a record has no duplicates for a given key, then the slot number s is given by

s =
n(k − l)
h+ 1− l

where k is the given key.

In addition, an adjustment to the slot number is done: if the key

k > l +
(s+ 1)(h+ 1− l)

n

then

s← s+ 1

6.2.3 Records with duplicate slots

If a record has several slots with the same key, then the highest possible slot is used when
adding new entries. If it is full, then the next-highest slot is used, and so on down until
the lowest possible slot is attempted. If all the permissible slots in a record are filled, then
a new record is appended, and the highest slot’s record number field is updated, and its
numberOfChildren field is incremented.

The lowest possible slot number sl is calculated as for s above in 6.2.2.

The highest possible slot number sh is calculated as

sh =
n(k + 1− l)
h+ 1− l − 1

Again, the adjustment is done: if

k > l +
sh(h+ 1− l)

n

then

sh ← sh + 1

8



l +
1(2K)
n

l +
2(2K)
n

l +
(n−1)(2K)

n
l +

n(2K)
n

l

l +
0(2K)
n

h = l +
n(2K)
n
− 1

Figure 8: A hash-index record with a lowest key of l, a highest key of h, a key-space of
K bits and n slots, showing the lowest-possible keys for each slot in general terms

6.3 Parameter tuning

The first record’s lowest (l0) and highest (h0) possible keys are a function of the hash index’s
key size K, which is constrained to be an integral multiple of 8 bits, and hence will always
be a power of 2. Thus

l0 = 0

h0 = 2K − 1

The slots in each record cover this range, as shown in figure 8.

Older versions of Magma used hash-indices containing records with 10 slots each. Each
record, therefore, could not divide its keyspace into equally-sized slots. Some slots would be
greater than others; that is, they would contain more keys than others. This is because all
the quantities (low key, high key, record key, number of slots, slot) involved are by definition
integers. This “unevenness” necessitated the adjustments described in 6.2.2 and 6.2.3.

Therefore, if every record r were to contain n slots where

log2 n ∈ Z

then the range (lr..hr) would always be evenly divisible by n. For illustration, consider the
example shown in figure 9. Newer versions of Magma enforce this constraint to ensure that
each record contains slots of uniform size; this provides a small performance improvement.

7 Extracting all objects from a database

Each of the (non-stale) objects in the database may be found in one of two ways:

1. Objects which are stored in a hash-index may be obtained by examining each slot
in each record. Slots which are not empty will contain OIDs. This operation is an
array-walk.

2. The anchor object by definition holds references, in the form of OIDs, to all other
“reachable” objects which which are not also in hash-indices. The anchor object’s
OID is obtainable from the objects file header. This operation is a recursive tree-
walk.

Given an OID, the offset into the objects file may be found by a simple array dereference
operation on the objects.idx file. Once the offset is known, the data in the objects file
may be read, starting with the length field, which indicates how far to read. After that, the

9



4..7 8..11 12..150..3

h0 = 26 − 1 = 63

16..31 32..47 48..630..15

h1 = 0 +
(0+1)(63+1−0)

4
− 1 = 15

l0 = 0

l1 = 0 +
0(63+1−0)

4
= 0

slot 0 slot 1 slot 2 slot 3

record 0

record 1

h3 = 6 +
(0+1)(3+1−0)

4
− 1 = 6

record 3

l3 = 6 +
0(3+1−0)

4
= 6

6 6 6

h2 = 4 +
(0+1)(15+1−0)

4
− 1 = 7

record 2

l2 = 4 +
0(15+1−0)

4
= 4

5 6 74

6

Figure 9: The first four records of a hash-index where the keysize K = 6 and the number of
slots n = 4

class ID and class version fields may be read since their offsets are known a priori. This
provides enough information to convert the remaining bytes in the MaObjectBuffer into the
corresponding object.

Thus to extract all objects from a Magma database, it is necessary to walk each (OID-only)
hash index and then to traverse the object tree starting at the anchor object.

10


