
Maui

by

Chris Muller

Maui ...1
Introduction .. 4
Guiding Principles ... 4
Core Widgets ... 4
Views... 5

Architecture... 5
Selecting Views.. 6

System-Views .. 6
The #panel view .. 6
The #defaultListEntry view .. 7
The #word view ... 7

Object Delineation ... 8
User-Interface Conventions... 10
The Context Menus .. 10

Menu Layout .. 11
Hot Keys ... 11
Panel Management ... 11
Clipboard..12
Labeling..12
Messages ..12

InvocationStrategies ... 13
Invoking Unary Messages ... 13
Invoking Binary and Keyword Messages.. 13

Supplying ParameterHolders via Drag-and-Drop........................ 14
Supplying ParameterHolders via typing an expression 15

Parameter-Holder Evaluators ... 15
Smart-Sizing ParameterHolders ... 16

Supplying ParameterHolders via "Pick Lists"17
Combo-box Pick Lists ...17
List-box Pick Lists...17
Checkbox Pick Lists ... 18
Abitrary Pick Lists.. 19

MauiPage... 20
Architecture...20
Implications for Maui.. 22
Construction of a MauiPage.. 22

Other Specialty Widgets... 23
MauiCollectionMorph ... 23
MaContextualSearch ... 24
MaClientProcessMorph .. 25
Color Pickers ... 25
Date Picker .. 25
File Manager.. 26

Preferences ..27
Object-Message Composition... 29

Obtaining an Object to Design .. 29
About PlotMorph... 31

Deleting an object.. 31
Specifying Message Settings ... 32
Changing The Label of an object... 34
Designing the UI.. 34
A Quick-and-Dirty Composition... 34
Sub-panel Composition... 35

Create the sub-panels .. 35
Changing the resultView of a MessageMorph widget................... 37
About InvocationStrategy's ... 37
Making a Getter/Setter.. 39
Specifying an Object "Picker"..40
The MauiBehaviorFinder .. 42
Completely Customized Looks ..44
Saving Custom Panel Configurations.. 45
Panels are Designed, now what? ...48
Assembling Panels...48

Exercise: Creating the Series Panel..49
Customizing the list-entries of a MauiCollectionMorph50

The Default Behavior...50
Making a Custom List-Entry ... 51

Adding Messages to the context menu ... 52
Roadmap ... 54

Introduction

Maui is a tool for rapid UI creation based on object--message composition, a.k.a.
"naked objects". Compositions can be saved as a named prototype, used in super-
compositions, and grouped into a Family of related panel prototypes all serving one
domain.

A Smalltalk developer might describe Maui as a "behavioral inspector."

Maui includes a number of light satellite frameworks that supply various application
services like documents, object-search, background process management with
progress monitoring. Maui allows utilitarian applications to be synthesized quickly,
modalessly, without the need to write any user-interface code.

Guiding Principles

Maui's goal is to present user-interfaces with high functional-density, efficient
access, and low clutter. Completely modaless, Maui tries to be smart about sizing
and placement, since user move and size actions drain time away from the domain
itself.

Core Widgets

Maui's three core widgets are:

• MauiDomainMorph - a rectangular Morph representing a single object.
Rendered as a compact composition of messages. Multiple views of the same
object are easily produced and used.

• MauiMessageMorph - one of several sub-rectangles, embedded into the
MauiDomainMorph, ready to send its MauiMessage object as a message to
the underlying receiver of the MauiDomainMorph.

• MauiParameterHolderMorph - Embedded into the
MauiMessageMorphs, parameter-holders are rectangles where other
MauiDomainMorphs are dragged as arguments of that particular
MauiMessageMorph.

A MauiDomainMorph can be created, rendered and attached to the hand by sending
#maui to any object.

anObject maui

Example:

From a workspace, this code

"demo"
Object new maui

addMessageNamed: #addDependent: ;
addMessageNamed: #dependents ;
addMessageNamed: #breakDependents ;
yourself

produces this panel, attached to the mouse pointer (a.k.a., the "hand").

The main rectangle is the DomainMorph.

It has a label, "an Object", then three MessageMorphs.

The first of the MessageMorphs has a ParameterHolderMorph.

Views

Architecture

Every "panel" rendered by Maui is an instance of a MauiDomainMorph. Each
instance can define its own set of messages to render, as well as its own layout and
other aspects. A particular configuration of a particular class of object is referred to
as a view.

The "configuration" of a particular view is actually represented by an exact clone of
the original view (a prototype), stored with other panels related to the same overall
domain, in a MauiFamily. Prototype clones can then be requested by name and class
(MauiFamily>>#viewNamed:for:), so any kind-of that object can be represented by that
panel, including subclass instances. Subclasses may override the more-generic super
panels in order to offer their extended subclass behavior.

Once the MauiFamily's copy of any of its named prototypical instances is obtained, it
can then be injected with a suitable domain object using the #object: setter. All of the
messages embedded into that view will reflect the answers for that object.

Selecting Views

Customized views appear on the usage context menu, just below all of the standard
options.

The small bitmap in the balloon was captured when the panel was saved as a
reminder of how it looked.

System-Views

Besides user-defined views composed by UI designers (see Object--Message
Composition), Maui also has pre-defined views which are code-generated. The
names of these system views are represented by selector Symbols rather than just
simple Strings. Those symbols are performed on (sub)instances of
MauiDomainMorph, which programmatically add a set of related, useful messages
and sets up various user-interface conveniences.

The #panel view

#panel is the standard view when no other view is specified. There are some basic
kinds of objects supplied with the rich Squeak 3.9 environment that users shouldn't
have to build themselves. For example, Strings, Numbers, Collections, or even
FileDirectory's. The following workspace opens a default #panel view for the current
month:

Date today asMonth maui

Which presents:

The #defaultListEntry view

Another system-view is called #defaultListEntry. This is a quick-and-easy way to
have meaningful information when a particular class of object is presented in a
Collection (via MauiCollectionMorph). This is one of the instances of DirectoryEntry
from the FileDirectory above:

The embedded MauiMessageMorphs are defined by #mauiDefaultColumns.

DirectoryEntry>>mauiDefaultColumns
^#(name modificationDateAndTime maFileSizeString)

This is used by the hard-coded #defaultListEntry method to add messages with those
names to a wide-and-short panel laid out horizontally. Each message added specifies
a #resultView of #word, which is one of the most useful views due to its compactness.

Note: The object may be "torn off" these list entries for dragging into the argument
of some keyword message.

The #word view

The #word view, presents a compact rendering of an object with only the objects
#mauiName (default implementation in Object uses its #printString).

In #word view, the object has a fillStyle specified by its individual or inherited
#wordFill Preference (see "Preferences"). This helps users remember it is really the
entire object, not just a String.

Object Delineation

While graced with the focus of the hand, an object is highlighted, as well as all
identical occurrences of that object visible on the desktop. If the Connectors project
is loaded from SqueakMap, translucent lines will be drawn to the other instances.

Each of the other widget types also delineate themselves by highlighting their border
while graced with the focus of the hand. Additionally, each supplies its own balloon-
help, context menu and hot-key mapping.

This shows our example Object, delineated, its balloon-help description, its standard
right-click "operational" context menu (right-click) and its "tools" menu (Shift +
right-click). The highlighted object responds to a number of hot-key commands, not
all of which are available on the menus.

To find out what each menu item does, hover over it with the hand, a pop-up balloon
displaying the invoked methods first comment is displayed.

This shows our example object with the mouse over its #addDependent: message.
The balloon-help shows the first comment of the method. It has its own operational
and tools menus, and its own hot-keys.

This shows the parameter-holder is also its own object with its own functionality.
The balloon-help in this case informs the user what type-suggesting parameter name
the developer used for the first argument, "anObject". This is the kind of object that
needs to be dragged to the parameter-holder to properly invoke the #addDependent:
message (but since any object can be a dependent, it is actually the most generic type
possible).

The result is a high functional-density with efficient access. Compared to
conventional interfaces, Maui interfaces require less physical "work" from humans in
terms of mousing distance, button presses, and clicks. Not every action is bottle-
necked through a "left-click" of the mouse.

User-Interface Conventions

A desktop with just 10 open Maui panels can easily result in more than 100 separate
event-monitoring regions on the screen, each with at least 10 independent
"commands" that could be invoked via mouse-buttons, hot-keys, or menu selections.
These 1000 separate functions can all be reached with the same simple lifecycle:

1. Look.
2. Point.
3. If necessary, press a button.
4. If necessary, select a desired menu command.

Many commands are accessible via hot-keys, which can spare a fourth gesture in
most cases. In some cases it is not even necessary to press a button. Maui allows
"mouse-over" message invocation is easily specified (see Object-Message
Composition).

The Context Menus

Every Maui object has two context menus. One with items meant to use the object
in an application is invoked merely by right-clicking, or pressing the Escape key. The

other has meta items meant to further "design" the panel, and is presented from the
first menu by selecting the "tools" option, or by holding down the Shift key while
right-clicking on the object. Another way to reach the tools menu, point at the object
and press the lowercase 'T' command key.

Menu Layout

The standard context menu is presented by right-clicking on an object. For
DomainMorphs, the context menu is arranged in a group of sections:

The letters in parenthesis in the menus are the hot-key equivalent for that function.

Hot Keys

It should be noted it is not necessary to press Alt or Control when using hot-keys,
leaving another hand more free to point.

Maui's hot-keys are completely cusomizable (see "Preferences"), and using them can
result in faster operation of a user-interface than always invoking the menus.

Panel Management

There is one MauiWorld for each Morphic World. To obtain the MauiWorld for the
current World:

MauiWorld current

MauiWorld provides methods related to the panels visible on the desktop. It would
be nice to make a UI for it, it'd be an automatic "window finder."

Clipboard

Objects cannot be put onto the system clipboard. However, a copy of any object can
be pasted within Maui at any time. To do this:

1. Point at the object to be copied.
2. Press the lowercase 'V' key (paste key), a copy of the receiver view is attached

to the hand.

Every time the lowercase 'X' command key is used for removing an object, that object
is replaces the contents of the current MauiWorld's #clipboard.

Labeling

Besides endowing panels with a familiar "windowish" look, the purpose of labeling is
to provide identifying information. Maui presents the #mauiName as the default
label, but allows labels to be overridden on an object-by-object basis, which can be
useful for context-specific identification or "investigations."

To change the label of any panel or message, point to it and press the lowercase "L"
key on the keyboard (or select the "set label" option from the "usage" context menu).
To completely hide the label of a panel or message, press the uppercase "L" on the
keyboard. The standard hot-keys chosen for Maui sometimes have a related "Shift"
alternate that usually invokes a design command.

Messages

This section describes how and when messages are invoked, and what happens when
they are. By default, messages which are not customized by a designer are handled
conservatively as follows:

unary - invoked by left-clicking. The answer is provided in #word view by
default, embedded in the MauiMessageMorph.
binary - same as keyword
keyword - invoked by dragging MauiDomainMorph objects to all
ParameterHolders of a MessageMorph. By default, the message is invoked
automatically as soon as the last ParameterHolder is filled, and all objects
dropped into the ParameterHolders are then removed.

Designers can customize this behavior by pointing to the message and then pressing
the lowercase 'E' key (for "Edit") on the keyboard, or by selecting the

option from the tools menu. This is explained more fully in
"Object--Message Composition".

InvocationStrategies

The MauiMessageMorphs embedded into domain objects are invoked according to
their InvocationStrategy. An InvocationStrategy is an instance of
MauiInvocationStrategy which specifies the following:

• What event should cause the message to invoke.
◦ clicked-on - for messages that perform some kind of action.
◦ moused-over - the message is invoked every time it receives focus

from the hand. Useful for tucking-away information that still wants
to be checked periodically.

◦ auto - the message is invoked when the object is initially opened, then
according to its #repeat and #repeatInterval parameters.

• Where should the result of the message be placed, a.k.a.,
#resultHolderTarget:. The possible values are, 'balloon', 'hand', 'local',
'world' or 'none'.

• What view should the result object assume.
• Which view should be the "tear-off" view, a.k.a., the #producedView. Setting

this to nil causes the result object to be picked up by the hand when left-
clicked.

Invoking Unary Messages

Unary messages don't require any arguments, therefore they require clicked-on to
invoke, by default. It can be changed to invoke only when the underlying object
#changed or even on a repeating basis.

Invoking Binary and Keyword Messages

In Smalltalk, a keyword message is a message which takes arguments. To invoke the
message, objects must be supplied to each argument of the MauiMessageMorph.
This can be done in the following ways:

• dragging any MauiDomainMorph into the parameter-holder and dropping it
there.

• typing an expression directly into the parameter-holder.
• using, if provided by the designer, the "picker", which presents a series of

common objects to pick from.

We will now look at each of these in detail.

Supplying ParameterHolders via Drag-and-Drop

Many user-interfaces establish complex domain references by presenting a pop-up
list of complex objects from which they can select. Maui can do this too (see
"Optional Parameter Settings", below), but also allows any object visible anywhere on
the desktop, even embedded in another Morph, to be dragged in directly as an
argument to the message.

In this Maui-based financial application, the user is setting up the object
representing a particular financial security known as "GOOG". Shares of GOOG are
traded on a particular FinancialExchange named "NASDAQ". In this screen shot, the
NASDAQ object is visible in three separate view instances, each delineated by green
outlines. The one in the upper-left is a user-defined view they named 'Calendar'. The
other two are the standard #word view previously described.

Since the user knows there is only one FinancialExchange named "NASDAQ", and is
the one referenced by the NVDA security, there was no need to go elsewhere looking
for it, NVDA is also traded on the NASDAQ, the object is right there.

This also illustrates the "tear-off" (e.g., #producedView:) function of any
MauiDomainMorph. The upper-right NASDAQ object has its #producedView set to
#word, which tells the object, when left-clicked, rather than pick it up, pick up a UI

copy (but exact same domain object) in the same #word view.

Also illustrated, are the translucent lines used to connect all occurrences of that
identical object on the screen. These are only available if the Connectors package is
loaded (installable from directly within the image via the "SqueakMap Package
Loader").

Supplying ParameterHolders via typing an expression

Another way to supply objects to message parameter-holders is by typing directly
into the parameter-holder morphs. To do this:

1. Point at the parameter-holder. It is delineated.
2. Note the balloon help, which hints at what kind of MauiStringEvaluator is

used.
3. Begin typing. It is not necessary to left-click in the parameter-holder,

although doing so won't hurt anything.

Parameter-Holder Evaluators

What is typed into parameter-holders will be interpreted according to how the
parameter-holder was set up by the designer. Maui includes three interpreters, one
for standard Strings, one for Dates and one that evaluates as a Smalltalk-expression.
Applications designers may add their own interpreter subclasses.

• This balloon indicates to "type a date", which means keyboard entry will be
interpreted by a MauiDateEvaluator.

Looking at MauiDateEvaluator class, we see the method and how it
converts the actual inputted String into an appropriate object:

evaluate: aString for: anObject
^ Date fromString: aString

• This balloon indicates to "type a Smalltalk expression," meaning anything
typed in the box will be evaluated as a Smalltalk expression in the context of
the receiver. That is why, to drop a plain String here, the user must type the
single-quote delimiters.

• It also indicated the user can drag "aMauiPage" there. A MauiPage is Maui's
Text domain object, supported by an included mini-wordprocessor widget
(see "MauiPage" later).

• This balloon instructs to "type a string", indicating it will treat what is entered
as a literal and drop it as a String. Therefore it is not necessary to type the
single-quote delimiters.

The default is a MauiSmalltalkEvaluator, which means the typed expression is
compiled and executed in the context of the receiver object. The result is then
dropped into that parameter-holder.

Smart-Sizing ParameterHolders

In keeping with its generic, compact nature, typing into parameter-holders causes
them to expand as you type; first horizontally then, after reaching a reasonable
proportion of the screen-width, wrap to a new line. Continued typing will maintain a
3x4 width:height ratio until, when the size expands beyond a reasonable proportion
of the total screen-height, will add a scroll-bar.

In this way, whether a field is short-entry, multi-line long-entry, or anything in-
between, there is only one widget to use. The design goal was to produce a widget
that always adjusts its size to be as small as it reasonably can.

The yellow-circle may be dragged to override automatic sizing at any time.

Supplying ParameterHolders via "Pick Lists"

Pick lists are very common in standard user-interfaces, Maui provides a simple
"pick-list" function. Although any MauiDomainMorph can act as a pick list, there
are three familiar forms provided for easy implementation of the most-common
standard list-widgets: combobox, listbox, and checkbox.

Combo-box Pick Lists

Combo-box Pick Lists are obtained by left-clicking on the parameter-holder. A
Collection of available options is displayed just below the parameter-holder, left-
clicking any of them will drop it into that parameter-holder immediately.

Maui makes it easy to specify your own pick-lists, either fixed or program-generated.
This will be desribed under "Object-Message Composition."

List-box Pick Lists

List-box pick lists are identical to combo-box, except they display all the time, taking
up more screen space but not requiring a left-click to initially see the list. To
demonstrate the List-box pick list, we will sneak peek at a upcoming section and see
how a particular Evaluator is specified for a particular ParameterHolder.

Hover over any parameter-holder, then Shift + Right-click. The following menu
appears:

After selecting that option, the three default MauiStringEvaluators are presented in a
list-box format:

The current selection is centered on the right. Left-clicking any of the other
selections will immediately drop that object into the #evaluator: message, instructing
the other ParameterHolder how to interpret strings.

Which brings up another note, Maui opens panels on its own panels or widgets to
customize some of their functions. These "utility" panels, opened on a kind of
MauiDomainMorph, display their label bar in a different color (customizable, see
"Preferences"), to indicate they are "designer" panels operating only on a UI panel,
not on any domain object.

Checkbox Pick Lists

Checkboxes are very common way to indicate Boolean value. But Maui genericizes it
by making it about a Collection of parameters that are "cycled" each time the user
left-clicks on them or the parameter-holder. There can be more than two. A
"checkbox," then is then simply a collection of the object true and false.

In this screenshot, a Maui panel is being used to customize a PlotMorph.

Remember that any object, including the true and the false, can have multiple
views. This designer used Squeak's built-in Paint tool to create his own 'iconic'
representations of true and false, represented as a green checkmark and a red X,
respectively.

Also interesting note about this panel illustrates the generic nature of Maui's
"checkbox"; that the #cornerStyle message also uses a CycleParametersStrategy to
cycle between the Symbols #square and #rounded, merely by left-clicking them or
the parameter-holder.

Abitrary Pick Lists

Maui's pick-lists are pretty flexible. Finally, you can use virtually any
MauiDomainMorph as the "picker". In this example, a Maui panel is being used to
customize a PlotMorph. The user is about to set the (background) #color: of the
PlotMorph.

The user has hovered over the Color blue, that is why the translucent green line is
drawn to every other occurrence on the screen; relevant or not, its the same object.

Another use of the generic picker would be to use Maui's own
MauiFileDirectoryMorph to act as a "file picker".

MauiPage

Architecture

Most classes of objects in Smalltalk are pointer objects; they have references to other
complex pointer objects. Another common type are byte and word objects, which
efficiently maintain a stream of bytes or words, respectively.

But Squeak 3.9 offers another powerful object called Text which acts as a byte object
with embedded pointer references. Maui has exploited this with MauiPage and its
corresponding MauiPageMorph. This specialty widget is like a mini-wordprocessor,
with a simple toolbar for customizing text, and the ability to embed any Morph as a
"character" in the text:

A MauiPage with the user dragging in the famous "bouncing atoms" Morphic demo.

As with everywhere else in Maui, the green outline indicates exactly where the morph will be dropped.

A deepCopy is of the morph is what is actually dropped.

Once embedded, it is flows and wraps just like a big character, and can easily be deleted with the

backspace key!

Every time the page is "saved" (Command+s), it saves a copy of itself.

It's interesting to note that the underlying widget used for the MauiPage is the same
one used for ParameterHolder morphs, a testament to its flexibility!

Implications for Maui

"Any Morph" is nice for Squeak, but the embedding of other MauiDomainMorphs
presents a number of additional opportunities for leveraging the capabilities of Maui:

• Domain validation: MauiPages can be signaled from domain applications
as "error messages" with embedded objects that need correction.

• Training / job-aids: MauiPages can be used to write documentatoin with
embedded live, working objects.

• End-user empowering: MauiPage fields can allow users establish inter-
object relationships without needing to rely on program functionality. This
can eliminate the need for entire chunks of program code.

Construction of a MauiPage

Maui pages can be constructed programmatically with a Streaming api, or via the
MauiPageMorph specialty widget. To use the specialty widget, execute the following
in a workspace:

MauiPage new maui

Applications wishing to leverage Maui may:

MauiUserError signalPage: myMauiPageWithErrorMessage

which will cause Maui to present a useful message to the end-user with objects
embedded that need fixed. For example, in this financial application, the user tried
to access the trading #calendar for the NVDA security. But the calendar is based on
what exchange the security is traded on, and the exchange for this security has not
yet been set up.

The user right-clicks on and selects the 'Set Up' view from the menu,
which presents the view on the right to set the #exchange:. If the #producedView: is
set, the user would be able to simply "tear-off" the appropriate panel for setting up
the exchange.

The application was able to leverage Maui's labeling function to allow the error-
message to flow with proper grammar. "This security" is just the label for the NVDA
object instance is embedded in #word view, but with its label set to "This security".

Other Specialty Widgets

The MauiPageMorph is one of Maui's most useful "specialty" widgets. There are a
number of others included with the base package.

MauiCollectionMorph

We have already seen MauiCollectionMorph. It's most notable feature is that it never
enumerates all elements to do any of its work. Unlike other list widgets, therefore, a
MauiCollectionMorph is not limited in how large a collection it can display.

The object delineated in green is a MauiCollectionMorph whose underlying domain
object is a MagmaCollectionReader with more than one-half million elements in it.
Again, any object which can answer #size and #at: is supported. The initial
population, scrolling and paging all operate with sub-second response time, the same
as if the list had only 100 elements.

It's ironic for Maui to support large lists this well, since they seem to go against the
core principle of Maui, that the computer should cater to the user. Large-scrolling
lists require the user to do a lot of scrolling and visual-scanning with their eyes to
locate elements. Computers should be doing the locating, not people, which is why

Maui provides a generic "object search" tool so the computer can do the scanning.

A large scrolling list can convey a lot of information efficiently, notably its size and
contents type are quickly ascertained. A sample of the elements is immediately
available without having to send the #anyOne message. Finally, a quick scroll
around can provide a "feel" for the contents of the data. Finally, many users are
familiar and comfortable with large scrolling lists, so it made sense to design it so.

MaContextualSearch

Maui includes a set of light frameworks to support common application functions.
One such function is the ability to "find" objects matching one or more keywords.
Typically applications provide this themselves, but MaContextualSearch has the
ability to provide at least a basic "find" function without having to write a single line
of application code.

The framework itself is fit for separate document all its own, but we will show how it
is invoked from within Maui:

1. Point at the object to search.
2. Press the lowercase 'F' key.

Maui opens a basic "find" panel. One or more keywords can be typed into the
"Keywords" field. Press Enter and the search commences.

Characteristics of Maui searching are:

• The scan executes in the background.
• Objects have multiple keywords, at least one must match loosely match.
• Objects implement #maContextKeywordsDo: and value aBlock for each of

their keywords.

• The results discovered "so far" are displayed in the results list for further
inspection by the user even while the background search proceeds.

• The order of the results is prioritized according to the degree of keyword
match, as follows:

◦ Exact, whole matches.
◦ Case-insensitive, whole matches.
◦ Left-side matches (case-insensitive).
◦ Sub-string matches (case-insensitive).

• The user gets to maintain the "results" collection, manually paring it down or
subsequent adding searches.

• The results, themselves, may be searched.
• SearchContexts may be aggregated into larger super-contexts. For example,

one may wish to search about the Squeak compiler. Aggregating several
contexts could allow the local image, swiki, mailing list archive all composed
into one search-context, with results each on their own tab.

• Progress is monitored via a MaClientProcess, providing detailed progress and
estimated time remaining.

This function is lightweight enough to be used just to avoid scrolling too much. Just
point at any MauiCollectionMorph, it is highlighted. Press lowercase 'F', type in
keyword, press Enter. Objects are presented. Sometimes the direct route and let the
computer do the work is easier.

MaClientProcessMorph

As mentioned in the previous section, there is a generic background process
monitor. The framework itself is fit for discussion all its own, but its workings can be
easily explored within Maui.

Color Pickers

We have seen the namedColors picker. There are other panels though, for fine-
tuning color selections. Right click on a Maui'd Color instance to see the available
system-views.

Date Picker

Dates are used often enough to offer a generic Date-picker solution. This can be used
as a picker for any parameter-holder.

File Manager

Maui offers a generic file-manager.

Interesting features of the Maui FileManager:

• It is a MauiDomain panel on an instance of Squeaks standard FileDirectory.
• Entries tear-off as instances of DirectoryEntry.
• DirectoryEntry's have their own custom #panel view, which renders the files

initial contents.
• Files can be easily searched for by name or other attributes.
• Can show #totalSize of folders, so space-utilization allocation can be easily

seen.
• All of the standard Squeak "services" are provided on the context menu.
• plus an extra service for obtaining a Maui'd FillStyle, which can then be

dropped directly into MauiPreferences panel for spicing up the Maui panels
themselves.

Preferences

Maui offers a broad range of user customizable preferences. There is a global
MauiPreferences which can be overridden, attribute-by-attribute, by the
MauiPreferences of the Family. That Preference object, in turn, is overridable by
specific instances of domain objects. So, for example, a dangerous message may wish
to be colored Red.

This screen shot reveals the longest-possible chain-of-resonsibility of preferences. A
particular parameter-holder widget defines the #target that the preferences apply to,
as well as the #nextPreferences, the preference object inherited in case a particular
attribute is not defined at the prior level.

The last preferences in the chain is always MauiPreferences global.

To override a particular preference, see the picker for the #override: message. To stop
overriding a particular preference, use the #inherit: message.

Note, there is one MauiWorld for each Morphic World. There is one MauiFamily for
each MauiWorld. By experimenting with various preferences, entire "themes" can be
created at the Family / World level.

Object-Message Composition

Thus far, we have discussed the least-interesting aspects of Maui; operation of its
utilitarian interfaces that result from its most-interesting aspect: the quick-and-easy
composition of those interfaces.

To do this, we will construct the PlotMorph view used in a prior example. If you wish
to follow along as a tutorial, be sure to load the "Plot Morph" package from the
SqueakMap Package Loader.

Obtaining an Object to Design

Since there is no separate "Studio", you must obtain a live object instance to design
on. To do this:

• point to an existing Maui Domain object and press the lowercase 'N'
command, for a new blank panel.

• send #maui to any object in a legacy Smalltalk inspector or workspace.
• drag a class or message directly out of a Smalltalk legacy browser, on to the

desktop.

If you drag a Class or class-method out of the browser a Maui panel is created
instantly and you will not see the above menu. However, since we are dragging an
instance method, it can only be sent to an instance. Maui is prompting us if we
would like to create an instance of PlotMorph via the #new message. #new is a
suitable message for creating many kinds of objects, but not all. It is advisable to
check the class-side API when constructing instances of unfamiliar classes.

Maui constructs a panel with that message already embedded:

About PlotMorph

A PlotMorph instance represents a single chart, but which may have multiple datasets
plotted on it. The #series: method allows the creation (and subsequent access) of a
PlotSeries instance. A PlotSeries represents one dataset on the chart. By hovering
over the parameterholder, we see the #series: method takes "aSeriesOrSymbol".

If #series: adds a dataset, there may be a method to remove a dataset. Yes,
#removeSeries:. Also, there must be a way to see the list of PlotSeries already added;
yes, under the 'accessing' category there is #series. After dragging these messages the
panel looks like this:

These messages are live, easily "invoked" by either left-clicking on the unary #series
message or dragging or typing something into the parameter-holders for the other
two.

But clicking on the #series message only shows, "a empty Dictionary". We want
something that displays the series in a ordered list, Dictionary's are not ordered and
Maui can't even display their elements without custom tooling. Only collections
which can respond to #size and #at: are supported by the MauiCollectionMorph
widget. Therefore, we need to add a method to PlotMorph:

seriesArray
^ series asArray

Deleting an object

Next we want to delete the #series message, which answers a Dictionary, and add
#seriesArray which answers a collection which can respond to #size and #at:. To

delete the #series message:

1. Point to it so the entire message is highlighted.
2. Press the lowercase 'X' key on the keyboard.

Pressing lowercase 'X' on any delineated object in Maui will remove it instantly with
no confirmation. Warnings and confirmations are not in the nature of Maui's user-
interface principle; that the user should drive the computer. If you remove the object
by mistake it can be retrieved from the current MauiWorld's #clipboard.

Now the panel looks like this:

Specifying Message Settings

We need to make some improvements to that #seriesArray message. We want it to
list out the series, and the simpler name, "series" is more friendly than "seriesArray".
To make the improvements, open the "settings" on the message.

1. Point to the #seriesArray message, it is delineated.
2. Press the lowercase 'E' (for "Edit") on the keyboard.

The settings panel is displayed:

The #resultView of a MauiMessageMorph instructs Maui which view should be created
to represent the result of invoking a message. As previously mentioned (see
"Views"), there are two types of views, user-constructed, represented by Strings, and
code-generated, represented by Symbols. Two code-generated views available for
any object in the system are #word, the default, and #panel. We need to change the
resultView: to #panel.

Next, we want the message to invoke more aggressively, so select the "Auto"
invocation-strategy. Now the message will invoke automatically when the PlotMorph
panel is opened rather than having to click it.

The empty Array of PlotSeries are rendered on the original panel.

Changing The Label of an object

To change the label of a the #seriesArray message (or domain morph):

1. Point at the message.
2. Press the lowercase 'L' key on the keyboard.

A dialog for adjusting the label appears. The label may be changed to something
more friendly, like, "Series".

Designing the UI

From here, we could continue to add messages useful for customizing the plot. For
the sake of this tutorial, let's pretend these are the requirements:

"General Options"
Ability to set the #title and background #color of the PlotMorph

"Grid Options"
Ability to set the following boolean options:

• shouldDrawAxis:
• shouldDrawCotas:
• shouldDrawGrid:

"Margin Options"
Allow specification of the margin and cornerStyle

A Quick-and-Dirty Composition

We could simple add the functionality in about 30 seconds by simply continuing to
drag messages, but we might end up with something like the following:

This might be fine for some cases, but it is not very friendly because the functionality
is not organized. A better way is to build panels that accomplish one task or use-
case. Those finer-grained panels can then be assembled into larger super panels.

Sub-panel Composition

We will now create a set of simple panels each focused on one aspect of the
PlotMorph.

Create the sub-panels

To get a new, blank view of an existing object:

1. Point at the object you wish to obtain a new view of.
2. Press the lowercase 'N' ("new blank panel") key on the keyboard.

Alternatively, the lowercase 'V' key command will produce an exact clone of
that view.

3. A new panel is attached to the hand. It and the original panel are delineated
because they are both just different views of the same object.

4. Press lowercase 'c' to open the class browser for this object.

Please create the above method for this tutorial.

Set up the new sub-panel as desired by dragging the #title and #color messages. When
dragging messages directly out of legacy Smalltalk browsers, it is not necessary to
hold Shift like it is when dragging Maui objects around. The panel now looks like
this:

Changing the resultView of a MessageMorph widget

When a message is invoked, the shape the produced result assumes, as well as where
it is placed, is specified by the #invocationStrategy of a MauiMessageMorph. Let's use
one of the better views available for instances of Color. To see the available views,

simply open the context menu on the object. We see this menu:

The top portion of the menu, down to "start a list", are commands available to every
MauiMorph. The last four items are the list of system-generated views available for
instances of Color (the #defaultListEntry is a view available for all MauiMorphs as well).
Any user-defined views of Color would appear below that, followed by user-defined
commands for the context-menu.

Since we don't even have to do any design work to have a better compact
representation of the Color selected for our PlotMorph, let's change the output of the
#color message to #horizontalIcon. This is accomplished by adjustmenting the
#resultView to the #color messages' InvocationStrategy.

About InvocationStrategy's

To edit the invocationStrategy of a message:

1. Point at the message, it is highlighted.
2. Press the lowercase 'E' key (for "Edit") on the keyboard. This is the hot-key

for the "settings..." option on the tools menu.

The following panel is displayed:

Look closely. On this MauiMessageMorph panel, itself, there are only four message:
#invocationStrategy, selectStrategy:, #invocationStrategy:, and resultHolderMorph:.

#invocationStrategy is the getter for the MauiInvocationStrategy object of the
MauiMessageMorph. See how it's output view, embedded in the
#invocationStrategy message itself, has its own four messages which appears
slightly indented: #resultView:, #producedView:, #resultHolderTarget:, and
#postInvokeAction:, each the following function, respectively:

#resultView: is the shape the output will take. There are two types of
outputs, the user-synthesized types are named by simple Strings, the
computer-code synthesized types are named by selector Symbols, the
default of which is usually #word.
#producedView: is the shape the "tear-off" view will take. If set to the nil,
no tear-off view will be produced and, instead, the object will be picked
up by the hand.
#resultHolderTarget: is a simple String which desribes where the resultView
is placed.
#postInvokeAction: is a selector Symbol that will be performed after the
message is invoked. This was added so that when editing "lists",
instances of OrderedCollection, we could send #changed to it so it would
know to refresh after adding or removing elements.

selectStrategy: takes a particular Class of MauiInvocationStrategy. A new
invocationStrategy instance is created. The possibilities are:

MauiAutoInvocationStrategy - Invokes automatically at opportune times,
such as when the morph is initially drawn in the world, or when it
changes owners, or when its underlying object receives a #changed
message.
MauiClickedInvocationStrategy - Requires a left-click to invoke the message.

MauiMouseOverInvocationStrategy - Invokes once each time the hand enters
the bounds of the message-morph from outside. Additionally, when the
hand leaves the bounds of the result morph, it is automatically removed
from the screen.

#invocationStrategy: allows a single MauiInvocationStrategy instance to be easily
shared among multiple messages. Useful and powerful.

resultHolderMorph: allows a custom Maui morph to represent the the result
rather than a named view. This overrides whatever is put in #resultView:.

Note, descriptions of what each message does is also presented in balloon help by
hovering the hand over them.

Once the #color message's #resultView is changed to #horizontalIcon and clicking on
the message once more (to re-invoke it and reproduce the result) the panel looks like
this:

Making a Getter/Setter

The problem with the above is there is no way to set the title and color, which is an
absolute requirement.

Many "attributes" in domain models have a "getter" and corresponding "setter". If
the class has this pair of messages, Maui will make available a special menu item, "be
a getter/setter". This is a shortcut for setting up the messages automatically in a very
common way, appearing to handle both input and output from the same message.

To invoke this option on both the title and color messages:

1. Point at the message.
2. Select "be a getter/setter" from the tools menu (Shift + Right-click) menu.

Side note: Squeak has efficient menu access, allowing items to be selected by
keyboard in addition to the mouse. In this case, changing a message to a getter/
setter can be accomplished this way:

1. Point at the message.

2. Press the lowercase 'T' on the keyboard. The tools menu appears.
3. Press the '/' (slash) on the keyboard to filter the menu items. "Be a getter/

setter" is highlighted.
4. Press Enter.

That's just four quick gestures. There tend to be quite a few getter/setters, so it can
pay in the long run to commit an efficient series of gestures to muscle memory,
rather than an inefficient series of gestures.

Now the attributes can be updated by supplying the parameter-holders as described
in the first section.

The figure shows the user updating the title (a String) without the Smalltalk single-
quotes. This is because the Evaluator was changed to a MauiStringEvaluator, which
was discussed in the section, "List-box pick lists".

Specifying an Object "Picker"

Although colors are available under the "Maui" tab, it may be preferable to keep
them closer to the actual message needing them. To do this we specify a "picker" for
the ParameterHolder widget. To do this:

1. Point at the parameter-holder for the #color: message. It is highlighted.
2. Shift + Right-click to see the design menu. Select "picker...".

The maintenance picker panel is displayed:

Maui uses "optionalParameters" terminology here. The #optionalParametersMorph:
method instructions describe exactly how to set up the picker. So, let's do that:

1. Obtain a "Color picker". Maui has a special panel for the Color class which
suits this purpose. Either drag one out of the "Maui" tab or evaluate the
following in any text field (or workspace):

Color maui namedColors

A Color Picker is available.

1. Next, select "maui this morph" from its tools menu.

A mini "sketch" of the morph is attached to the hand. Drop it in as the argument to
#optionalParametersMorph:.

Stay with the click-and-pick strategy for this picker.

What just happened is, we used a Maui panel to customize the parameter-holder of
another Maui panel. We can now select colors by left-clicking directly in the
parameter-holder.

The MauiBehaviorFinder

Maui integrates with the legacy Smalltalk browsers, but sometimes there are rich
hierarchies of behaviors that aren't always convenient to find causing, in actual
practice, panel composition to sometimes became cumbersome.

To alleviate this Maui provides its own "Behavior Finder," offering power not found
in the standard Squeak system, and allow designing user-interfaces more quickly and
easily. For this section, we will build the "Margin" sub-panel, which looks like this:

First, obtain a fresh blank-canvas.

1. Point at the existing MauiMorph, it is highlighted.
2. Press the lowercase 'N' key (for new panel).

A new blank panel with for same PlotMorph domain is attached to the hand. Drop it
anywhere on the desktop. The #margin: message is in AxesMorph, the #cornerStyle is all
the way up in Morph. Without knowing this, designers spend quite a bit of time
hunting around the browsers looking for appropriate behaviors, and Maui only
allows dragging out of Class browsers, Hierarchy browsers or Package-Pane
browsers, but not message-list browsers or Lexicons.

To open a MauiBehaviorFinder:

1. Point at the new panel, it is highlighted.
2. Press the lowercase 'B' command key to browse and find behavior suitable for

the object.

A MauiBehaviorFinder is opened, looking something like this:

A MauiBehaviorFinder is a specialized tool for finding methods in the system. Page
through the various "tabs", you will notice sets of messages that begin with "select" or
"reject" and another set that begin with "add". The former remove methods from the
list, the latter add. See the balloon help of each message for details. Additionally, the
messages listed in the right-hand pane have the PlotMorph instance we invoked this
panel for as their receiver, so messages can be "tried" right there without having to
first drag them in. Very convenient!

Use the behavior finder to locate the #margin method. Now, because the message is
invoked on a clicked event, we have to use another method to pick it up. How about
the "clone" hot-key command:

1. Point at the #margin message.
2. Press the lowercase 'V' key on the keyboard.

A clone of the message is attached to the hand. Hold down Shift and drag it into the
new panel.

Now locate the #cornerStyle message and do the same. Make each one a getter/setter.

The #cornerStyle message takes one of two values, #square or #rounded. As an
exercise, see if you can specify a "picker" for that parameter-holder that lets the user
toggle between those two values. Here are the general instructions for how to do
this:

1. Open the "picker..."
2. Obtain a sequenceable Collection of those two Symbols as a maui panel.
3. Select "maui this morph" on that collection panel!
4. Use that to specify the #optionalParametersMorph:.
5. Select "a MauiCycleParametersStrategy" as the #optionalParametersStrategy.

Finally, change the label of the panel to "Margin".

The panel looks like this:

Completely Customized Looks

Next, we will demonstrate how any Maui panel can have a completely customized
look. We will build the "Grid Options" panel with three boolean checkboxes. But
instead of displaying the #word view of the true and the false, we will create a green
checkmark and red X to represent those values.

The key concept here is that Maui Morph panels may contain not only MauiMessage
morphs and other MauiDomain morphs for the same object, but also any non-Maui
Morph. So, first, let's obtain the visual sketch representation; the green check and
red X. Using Squeak's built-in painting tool you may produce something like this:

After selecting "Keep" we can drag it into a panel view of the true object. We have
already covered everything needed to execute these steps, but here they are:

1. Execute "true maui" in a workspace.
2. Press the lowercase 'N' to get a new panel on it.
3. Drag the checkmark into the panel (don't forget to hold Shift).
4. Press the uppercase 'L' to remove the label bar.
5. Select "be invisible" from the "tools" menu.

This "panel" for true looks like this:

Saving Custom Panel Configurations

This was quite a few steps so let's remember this view as 'iconic'.

1. Point at the panel. Maui does not highlight in this case because basic types
like true and false because it can potentially is of questionable value.
Nevertheless, the object has keyboard focus.

2. Press the lowercase 'S' key on the keyboard to "Save" this panel configuration.

The "manage views..." panel is displayed.

It is important to remember the view at the highest "level" possible. For this view,
however, we never want anything but True instances to render as a green checkmark,

so we select True.

Note, now the context menu for the green checkmark includes 'iconic'.

Repeat the process for a red X, remember it also as 'iconic' at the False level.

Now we are ready to use these two new views in our "Grid Options" panel. Make a
new panel, add these three messages:

Open the InvocationStrategy for the first one, change its #resultView to 'iconic', its
#producedView to nil, and use selectStrategy: to select a
MauiAutoInvocationStrategy.

We need to accomplish same thing for the other two "shouldDraw..." messages,
which can be done quickly by sharing the invocation strategy of the first.
Specifically:

1. Point at the #shouldDrawCotas message.
2. Press the lowercase 'E' to open its settings.
3. Point at the #shouldDrawGrid message.
4. Press the lowercase 'E' to open its settings.

5. Drag the "a MauiAutoInvocationStrategy" object from the #shouldDrawAxis settings
to the #invocationStrategy: setter of each of the other "shouldDraw" messages,
thus:

Top off the Grid Options panel by making each message a getter/setter, making each
parameter-holder behave like a checkbox, and changing its label to "Grid Options".

At this point we have four panels looking approximately like:

with various pickers or checkbox behavior for the appropriate messages.

Panels are Designed, now what?

At this point, we can do a number of different things with panels. We can:

• Save each one as its own named view.
• Add each one as a "tab" of an integrated super-composition and save that

view.
• Assemble them into a fixed super-composition and save that view.

Given the potential desiring high interactivity with the charts, we will choose the
latter option, which trades the most screen-space for fastest and broadest scope of
use. We will assemble these into a fixed super-composition.

Assembling Panels

We will now assemble the panels into a single super panel. Here are the steps:

1. Obtain a new, blank panel.
2. Use the menu to change its layout to left-to-right ("tools"-->"layout"--

>"arrange"-->"left-to-right").
3. Point at "Margin" panel. The entire panel, along with all the other ones, are

delineated.
4. Press lowercase 'G' to grab the panel onto the hand. A left-click also

accomplishes this.
5. Press and hold the Shift key as it is being dragged into the new left-to-right

super panel.

6.

7. Then the Grid Options and General panels. Sometimes panel assembly
requires a little patience, deliberation and care with the mouse. It gets easier
once you figure out where to make the panel grow in the way you want it.

8.
9. The "a PlotMorph" label is not needed, remove it (point, then Shift+L). We

now have the upper super-panel.
10. To maintain a a reasonably squarish rectangle, we will assemble the super-

panel and "Series" panel vertically into the final super-panel.
11. Obtain the final super-panel, a new blank panel (point, then press 'N' for a

new view).
12. Shift+drag the "General | Grid Options | Margin" super panel and the

"Series" panel into this new super panel.
13. Save the final panel as 'Properties' (point, then press 'S' to save the panel).
14. Note "Properties" appears at the bottom of the context menu for any Maui'd

PlotMorph instance.

Exercise: Creating the Series Panel

As an exercise, employ the concepts used in preparing the PlotMorph to customize its
PlotSeries counterpart. Designing the panel to look like this will cover most of the
concepts:

To get started, you need an instance of PlotSeries to work on. What is the best way to
get one at this point? Looking back at "Obtaining an Object to Design", the first
suggestion says:

• point to an existing Maui Domain object and press the lowercase 'N'
command, for a new blank panel.

In this case, we want an instance of a PlotSeries, not a PlotMorph. To get a series, we
simply invoke the #series: method already installed on our PlotMorph.
Unfortunately, PlotMorph does not signal #changed to itself, so the #seriesArray
message must be manually refreshed (point at message, press lowercase 'R'). Then
point at the PlotSeries in the list and press the lowercase 'N'. A new design panel.

Customizing the list-entries of a MauiCollectionMorph

The Default Behavior

After adding a PlotSeries with the #series: method, the entries in the list look
something like this:

The entries are in a system-view called, #defaultListEntry. #defaultListEntry contructs a
short-and-wide list-entry view with a proptionally-spaced layout (for columnar
presentation). The default columns selected for this presentation are implemented
by the message #mauiDefaultColumns. The default implementation of
#mauiDefaultColumns, in Object, is simply:

mauiDefaultColumns
"Answer the default selector Symbols that will make up my defaultListEntry view"
^ #(mauiName)

So the default-columns are just a single column containing the #mauiName. The
default implementation of #mauiName, in Object simply answers its printString.

In this day and age, Smalltalk can do so much better than relying on printString to
make "tables." Maui lets us do it better.

Making a Custom List-Entry

Like the getter/setter, Maui provides a helper for making views designed specifically
to be entries in a list. Here is how it is used:

1. Obtain a new clean panel.
2. Drag in the messages you want as "columns".
3. Customize each message as desired. For example, you might want to remove

their labels or change their views.

4. Select "as list-entry" from the tools menu. The view is reshaped.

5. Save the view as "list-entry1" or another name of your choice.
6. Set the "elements-view" of the Collection to "list-entry1" or the name you

chose.

1.
7. Save the PlotMorph configuration once again, because we just changed its

collections elements-view.

Adding Messages to the context menu

To see the graph itself, the best thing to do is to provide a #openInHand message,
since that also allows it to be easily picked up if it is subsequently embedded
somewhere. Dangerous or less-oft-used unary messages should be placed on the
context menu. That location gives them a little less accessibility and doesn't waste
screen real-estate.

To add it:

• Add the #openInHand message to the panel.
• Customize the message's settings, as desired. In this case, set the

resultHolderTarget: to none because we don't want the MauiMorph
representation of the PlotMorph, we want the PlotMorph itself and
#openInHand does that.

• Select 'add to global context-menu' or 'add to view-level context-menu' from
the tools menu.

◦ "add to global context-menu" will add this message to the end of the
context-menu for every instance of this class of object. Other classes
of objects will not have the message added.

◦ "add to view-level context-menu" only adds the message to the end of
the context-menu for this particular configuration of view. Don't
forget to Save the view as a new version of the prototype!

• Point at the #openInHand message on the panel, press the lowercase 'X' key
to delete it.

• Note the message has been added to the bottom of the standard context
menu.

With this approach, the user is free to drag the PlotMorph anywhere they wish,
including inside the control panel itself.

Roadmap

The biggest problem for Maui is that it is tightly-coupled to the Morphic platform of
Squeak 3.9. Although powerful, there does not seem to be a lot of support from
within the Squeak community for Morphic. I would like to address this in the
following ways:

• Port Maui to a longer-term graphical framework. Perhaps Morphic 3.0,
Tweak, or even Croquet.

• Add functionality to export the Maui prototype panels to other graphical
frameworks dynamically at run-time.

• In particular, an export to a web-supported UI framework.

	Maui
	
	Introduction
	Guiding Principles
	Core Widgets
	Views
	Architecture
	Selecting Views

	System-Views
	The #panel view
	The #defaultListEntry view
	The #word view

	Object Delineation
	User-Interface Conventions
	The Context Menus
	Menu Layout

	Hot Keys
	Panel Management
	Clipboard
	Labeling
	Messages
	InvocationStrategies
	Invoking Unary Messages
	Invoking Binary and Keyword Messages
	Supplying ParameterHolders via Drag-and-Drop
	Supplying ParameterHolders via typing an expression
	Parameter-Holder Evaluators
	Smart-Sizing ParameterHolders

	Supplying ParameterHolders via "Pick Lists"
	Combo-box Pick Lists
	List-box Pick Lists
	Checkbox Pick Lists
	Abitrary Pick Lists

	MauiPage
	Architecture
	Implications for Maui
	Construction of a MauiPage

	Other Specialty Widgets
	MauiCollectionMorph
	MaContextualSearch
	MaClientProcessMorph
	Color Pickers
	Date Picker
	File Manager

	Preferences
	Object-Message Composition
	Obtaining an Object to Design
	About PlotMorph
	Deleting an object
	Specifying Message Settings
	Changing The Label of an object
	Designing the UI
	A Quick-and-Dirty Composition
	Sub-panel Composition
	Create the sub-panels
	Changing the resultView of a MessageMorph widget
	About InvocationStrategy's
	Making a Getter/Setter
	Specifying an Object "Picker"
	The MauiBehaviorFinder
	Completely Customized Looks
	Saving Custom Panel Configurations
	Panels are Designed, now what?
	Assembling Panels

	Exercise: Creating the Series Panel
	Customizing the list-entries of a MauiCollectionMorph
	The Default Behavior
	Making a Custom List-Entry

	Adding Messages to the context menu

	Roadmap

