
The joy of Smalltalk
An introduction to Smalltalk

© Ivan Tomek, 2000

Introduction to Smalltalk, VisualWorks - Table of contents
 Ivan Tomek 9/18/00

3

5.4 Using numbers for iteration - ‘repeat n times’
5.5 Repeating a block for all numbers between a start and a stop value
5.5 Repeating a block with a specified step
5.7 Measuring the speed of arithmetic and other operations
5.8 Declaring a new class: Currency

Introduction to Smalltalk, VisualWorks - Table of contents
 Ivan Tomek 9/18/00

4

10.5 Example: Circular Buffer
10.6 Introduction to files and external streams
10.7

Introduction to Smalltalk, VisualWorks - Table of contents
 Ivan Tomek 9/18/00

5

Introduction to Smalltalk - Preface
 Ivan Tomek

Introduction to Smalltalk - Preface
 Ivan Tomek 9/18/00

iii

Since the book does not make any assumptions about the reader's background, it is suitable for

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

1

Chapter 1 - Object-oriented programming - essential concepts

Overview

Figure 1.2. Workspace window: initial state (left), with selected text of Example 1 (middle), and displaying

the result (right).

Example 2: Comparison of results of numeric expressions

The line

(1327 squared) < (153 * 20000)

is a typical test to determine whether a comparison of two expressions gives a yes or a no answer. Type it

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

3

All Smalltalk code consists of ‘messages’ to ‘objects’ and this is why it is called object-oriented.
Some of the messages used above include squared, factorial, and <

Transcript area

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

4

285 + (37 squared)

Smalltalk now asks 37 to execute message squared. This returns object 1369 and the code now
effectively becomes

285 + 1369

Smalltalk now asks object 285 to execute message + with argument 1369. This returns the final
result 1654. Note that this works because all Smalltalk messages return objects, and messages can thus be
combined.

The examples that you have just seen cover all possible forms of Smalltalk messages and if they
give you the impression that Smalltalk is essentially simple, you are quite right - Smalltalk is based on very
few very powerful ideas. Unfortunately, the ease of reading and writing pieces of Smalltalk programs does
not mean that writing significant Smalltalk programs such as a word processors or spreadsheets is very easy.
Difficult task are difficult even in Smalltalk - but not as difficult as in most other languages as you will see
later.

At this point, you would probably like to proceed to other Smalltalk programs, and if you really
cannot resist it, you can skip to Chapter 3 which starts our discussion of Smalltalk. However, the ideas of an

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

8

1. I press the Power button, which can be interpreted as sending message ‘Initiate cooking time setting

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

9

1.3 Examples of objects in computer applications

The situations described in the previous section illustrate the concept of objects and messages in

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

10

Figure 1.7. The opening window of Farm Launcher. Use it to select the first version of the Farm program.Farm

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts


Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

14

our new objects in the library too and if we come across another application that needs them (such as an

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

15

3 + 5

must be treated as a message + to object 3 to do addition with object 5 as in

‘Object 3, do + with object 5 and return the resulting number object’

or, to put it differently, as

‘Object 3

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

16

and executes it with the do it command. This sends the open message to Farm and Smalltalk starts by
looking for the definition of the open message in Farm. It finds the definition and discovers that its
operation starts by a request to the Window class object to create an instance of itself from a specification
provided by the Farm

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts


Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

20

Exercises

1. Use the System Browser to display the comments of the following classes and print them out using
command hardcopy in the text view’s <operate> menu.
a.

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

21

• definitions of methods name, moo, eat

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

22

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

23

Figure 1.23. A point can be represented by Cartesian coordinates x and y or by polar coordinates

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

26

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

27

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

28

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

30

Figure 1.30. A very small part of VisualWorks class hierarchy tree. Concrete classes are shown in boldface,
all other classes are abstract.

To find out about Smalltalk’s class hierarchy, use the System Browser. After selecting a class such
as Magnitude, select the hierarchy command in the class view <operate> menu and the text view will
display as in Figure 1.31, showing subclasses and superclasses and all instance variables.

Figure 1.31. System Browser showing a part of the hierarchy of class Magnitude.

The hierarchy shown in Figure 1.31 shows both abstract and concrete classes. Class Magnitude is
abstract and factors out properties needed for comparison, and its subclasses include numbers, printable
characters, date objects, and time objects. Magnitude has no instances because there is no need for such
abstract objects. Classes ArithmeticValue, Number, and

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

31

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

33

Exercises

1. Find and count all definitions (‘implementations’) of the following methods.
a. displayOn:
b. squared
c. <
d. =

2. Give an example of polymorphism from the physical world.
3. The three animals in the Farm world share the following messages: color, name, eat, isHungry, run,

walk. Some of them are implemented in the same way in each animal, others are not and the program
executes them polymorphically. List each group on the basis of your intuition.

Conclusion

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

34

understood by instances are called instance messages. A detailed definition of the computation performed
by a message is called a method.

Since all work in a pure object-oriented language is achieved by sending messages, method
definitions themselves consist of message sends. Some of the messages may be directed at the object

Introduction to Smalltalk - Chapter o srpObject-oriented programmingsrpessential concepts

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

36

Terms introduced in this chapter

abstract class

Introduction to Smalltalk - Chapter 1 - Object-oriented programming - essential concepts
 Ivan Tomek 9/17/00

Introduction to Smalltalk - Chapter 2 - Finding objects
 Ivan Tomek 9/17/00

38

Chapter 2 - Finding objects

Overview

In Chapter 1, we introduced the principles of object-oriented problem solving but we have not paid

Introduction to Smalltalk - Chapter 2 - Finding objects
 Ivan Tomek 9/17/00

39

Introduction to Smalltalk - Chapter 2 - Finding objects
 Ivan Tomek 9/17/00

42

2. Repeat Exercise 1 but assign each classes instead of pieces. Each card contains the name of the class,
its brief description, and a list of its functionalities. Replay the scenarios.

3.

Introduction to Smalltalk - Chapter 2 - Finding objects
 Ivan Tomek 9/17/00

44

section. We then expand the high-level conversations from Step 1 into class-level conversations
involving the identified classes.
As we develop the conversations, we record the responsibilities that the classes must have to implement

Introduction to Smalltalk - Chapter 2 - Finding objects

Introduction to Smalltalk - Chapter 2 - Finding objects
 Ivan Tomek 9/17/00

51

We will now evaluate the desirability of the selected nouns as classes:

• Address. If the address included the name of the city, postal code, province or state, and other
information, we would implement it as a class. As it is, an address is just a string of alphabetic and
numeric characters and strings are already in the library. We thus remove Address from our list of
candidates.

• Apartment. Yes, we will implement this concept as a new class because it represents an object that

Introduction to Smalltalk - Chapter 2 - Finding objects
 Ivan Tomek 9/17/00

52

1. Assign each class to an individual or a small group that will be responsible for maintaining all
information about the class.

2. Each group prepares a CRC card (Figure 2.8) for its class. Use 5 x 8” paper index cards.
3. Each group proposes a short description of the purpose of its class, gets it approved by the rest of the

Introduction to Smalltalk - Chapter 2 - Finding objects
 Ivan Tomek

Introduction to Smalltalk - Chntrvter 2 ChFinding objects
InÓIn Ivan Tomek In9/17/00

In

Introduction to Smalltalk - Chapter 2 - Finding objects
 Ivan Tomek 9/17/00

60

3. User clicks Open.
4. System opens Farm 1 user interface.

Scenario 4: User sends ‘meow’ to the cat.
High-level conversation:
1. User clicks cat in the Animals list.
2. System displays commands understood by cat and updates the rightmost part of the window.
3. User clicks meow.
4. System displays results in the right-most part of the window, restores the animal list, and erases the list

of commands.

Scenario 5:

Introduction to Smalltalk - Chapter 2 - Finding objects

Introduction to Smalltalk - Chapter 2 - Finding objects
 Ivan Tomek 9/17/00

62

Identify class responsibilities

We will now examine our scenarios and expand high-level conversations into class-level conversations.

Scenario 1: User starts Farm.
High-level conversation:
1. User enters and executes a Smalltalk expression.

Introduction to Smalltalk - Chapter 2 - Finding objects
 Ivan Tomek 9/17/00

63

4. System

Introduction to Smalltalk - Chapter 2 - Finding objects
 Ivan Tomek 9/17/00

65

Components:
• list of commands understood
• list of commands forbidden in Farm1
Responsibilities •

Introduction to Smalltalk - Chapter 2 - Finding objects
 Ivan Tomek 9/17/00

66

• Opening
•

Introduction to Smalltalk - Chapter 2 - Finding objects

Introduction to Smalltalk - Chapter 2 - Finding objects
 Ivan Tomek 9/17/00

69

Cow: Simulated cow. Knows the commands it understands and how to respond to them. Knows commands
that it should not understand in Farm1. A domain object.
Superclass: Object
Components: inherited
Responsibilities Collaborators

Introduction to Smalltalk - Chapter 2 - Finding objects
 Ivan Tomek 9/17/00

71

Exercises

1. Repeat the example, completing all CRC cards, writing all missing scenarios, descriptions, and
performing all required tests.

2.

Introduction to Smalltalk - Chapter 2 - Finding objects
 Ivan Tomek 9/17/00

72

• Construct a Context Diagram showing external actors (outside the scope of current project) and major
parts of the system to be developed.

• Construct a Glossary of terms. This Glossary will be continuously updated during the process.

Preliminary Design:
•

Introduction to Smalltalk - Chapter 2 - Finding objects


Introduction to Smalltalk - Chapter 3 - Principles of Smalltalk
 Ivan Tomek 9/17/00

75

Problem: Draw a 50-pixel side square whose lower right corner is the home position of the pen (Figure
3.2).

Figure 3.2. Pen world 3

Introduction to Smalltalk - Chapter 3 - Principles of Smalltalk

Introduction to Smalltalk - Chapter 3 - Principles of Smalltalk
 Ivan Tomek 9/17/00

77

 Pen is the receiver because it comes first, newBlackPen is a message. The name Pen begins with a

Introduction to Smalltalk - Chapter 3 - Principles of Smalltalk
 Ivan Tomek 9/17/00

78

variables

Introduction to Smalltalk - Chapter 3 - Principles of Smalltalk
 Ivan Tomek 9/17/00

80

is ‘pen gets (or refers to

Introduction to Smalltalk - Chapter 3 - Principles of Smalltalk
 Ivan Tomek 9/17/00

82

Dealing with simpler errors

Sooner or later, you will type and attempt to execute incorrect code. Code can be incorrect in more
than one way:

•

Introduction to Smalltalk - Chapter 3 - Principles of Smalltalk


Introduction to Smalltalk - Chapter 3 - Principles of Smalltalk
 Ivan Tomek 9/17/00

84

2. Objects in Pen World 5

Introduction to Smalltalk - Chapter 3 - Principles of Smalltalk
 Ivan Tomek 9/17/00

87

Exercises

1.

Introduction to Smalltalk - Chapter 3 - Principles of Smalltalk
 Ivan Tomek 9/17/00

89

'a cat' spellAgainst: 'a car' “Returns 80 - degree of similarity between the two strings.”

Whereas one-keyword messages don’t seem to cause any problems, keyword messages with multiple
keywords may be more difficult to read. Beginners often don’t understand that the multiple keywords form
a single message. The following are a few examples of multiple-keyword messages, one message per line.

Keyword messages with

Introduction to Smalltalk - Chapter 3 - Principles of Smalltalk
 Ivan Tomek

Introduction to Smalltalk - Chapter 3 - Principles of Smalltalk


Introduction to Smalltalk - Chapter 3 - Principles of Smalltalk
 Ivan Tomek 9/17/00

98

Figure 3.13. Debugger window with two most recently invoked methods shown on top.

To see the code of a message and the point reached in its execution, click the appropriate line in
the call stack. Since a code fragment is always referred to as

Introduction to Smalltalk - Chapter 3 - Principles of Smalltalk
 Ivan Tomek 9/17/00

101

writes the string enclosed between apostrophes to the Transcript.
The show: message expects a string argument and if you want to print information about an object

 messagt.

Introduction to Smalltalk - Chapter 3 - Principles of Smalltalk
 Ivan Tomek 9/17/00

105

You can also create a global variable with an initial value by evaluating an assignment such as

NewGlobal := 10

which will open a Notifier as in Figure 3.16 and create and initialize the variable upon confirmation.

Introduction to Smalltalk - Chapter 3 - Principles of Smalltalk
Ó Ivan Tomek 9/17/00106

the pool dictionary’s name. To create a pool dictionary, add its name to the Smalltalk dictionary as for a global variable, enter values into it (we will see how in the chapter on dictionaries), and enter the name of

the pool dictionary as the pool dictionary keyword in each class that should have access to it.As an example of a pool dictionary, TextConstants contains information needed for display of text.One of its keys is, for example, called Tab

Introduction to Smalltalk - Chapter 3 - Principles of Smalltalk
 Ivan Tomek 9/17/00

107

Figure 3.18. Class instance variables are listed on the class side of the browser.

Although class variables are rare, they are useful and Farm 6 gives an example that illustrates their

Introduction to Smalltalk - Chapter 3 - Principles of Smalltalk
 Ivan Tomek 9/17/00

109

Exercises

1. Inspect Smalltalk to find all references to Transcript

Introduction to Smalltalk - Chapter 4 - True and False objects, blocks, selection and iteration
 Ivan Tomek 9/17/00

112

Chapter 4 - True and False objects, blocks, selection and iteration

Overview

Introduction to Smalltalk - Chapter 4 - True and False objects, blocks, selection and iteration

F i g u r e 4 . 5 . Dialog request: ‘What is your favorite beverage?’ initialAnswer: ‘Skim milk’

To write the program, we need to know how to convert a string to upper case. if we don’t, we open
class String (that seems the logical place) and search for a suitable method by executing command find
method in the <operate> menu in its instance protocol sview. Unfortunately, the list that opens does not
offer any suitable method. We thus try String superclass CharacterArray and find that its method list (Figure

Introduction to Smalltalk - Chapter 4 - True and False objects, blocks, selection and iteration
 Ivan Tomek 9/17/00

117

Figure 4.6. Response to find method

Introduction to Smalltalk - Chapter 4 - True and False objects, blocks, selection and iteration
 Ivan Tomek 9/17/00

119

^self

Introduction to Smalltalk - Chapter 4 - True and False objects, blocks, selection and iteration


Introduction to Smalltalk - Chapter 4 - True and False objects, blocks, selection and iteration
 Ivan Tomek 9/17/00

126

class. To do this, open a Browser, and add a new category called for example Tests using the add …
T e s t N a m e
 2 2 . 0 8 4 n a m e 1 2 / F 0 9 . 9 6 T f
 - 0 . 0 3 4 3 T c

Introduction to Smalltalk - Chapter 4 - True and False objects, blocks, selection and iteration
 Ivan Tomek 9/17/00

127

This class has not yet been commented. The comment should state the purpose of the class, what
messages are subclassResponsibility, and the type and purpose of each instance and class variable. The
comment should also explain any unobvious aspects of the implementation.

Select the whole text and replace it with a comment. There are two styles for writing the comment.
One is very antropomorphic and uses the first person as in ‘I represent a name ..’. Its advantage is that it
makes you think in terms of the class which always helps. The other style is less personal and uses the third
person as in ‘This class represents a name …’. This style seems less extravagant. Choose the style that you
like better and use it consistently. We will use the first style because it will force us to think as if we were
the class which seems a good idea at this point of the book. Following the template, we write

I represent a personal name consisting of a first name, a middle name, and a last name.

Instance variables

firstName <String> first name
middleName <String> middle name
lastName <String> last name

The comment seems almost unnecessary because it seems very obvious but it is an essential
practice to use class comments. As an example, the indication that the values of variables should be String
objects is important.

Introduction to Smalltalk - Chapter 4 - True and False objects, blocks, selection and iteration
 Ivan Tomek 9/17/00

128

Figure 4.12. Browser with method template.

Let’s start with the get method for the firstName instance variable. A get message simply returns
the value of a variable and it is standard practice that it is named with the name of the instance variable. The
definition is thus

firstName
^ firstName

Figure 4.14. <operate> menu command for filing out a method. A similar menu is available in other System

Introduction to Smalltalk - Chapter 4 - True and False objects, blocks, selection and iteration
 Ivan Tomek

Introduction to Smalltalk - Chapter 4 - True and False objects, blocks, selection and iteration
 Ivan Tomek 9/17/00

134

[self <= max]

to the true object. This returns true or false. The Boolean result is then returned. Note that all subclasses of
Magnitude including Date,

Introduction to Smalltalk - Chapter 4 - True and False objects, blocks, selection and iteration
 Ivan Tomek

Introduction to Smalltalk - Chapter 4 - True and False objects, blocks, selection and iteration

Introduction to Smalltalk - Chapter 4 - True and False objects, blocks, selection and iteration
 Ivan Tomek 9/17/00

140

Figure 4.19. y := x := ‘John Smith’ binds x and y to the same object and both x=y and x==y are true.

As another example, consider that class True and False each have only one instance. As a
consequence, equivalence and equality of Boolean objects mean the same thing.

The check of equivalence is faster because it only compares the memory addresses of the internal
representation of the two objects. If the addresses are the same, the objects are equivalent; they are one and
the same object. Checking whether two objects are equal may take much longer. As an example, to decide
whether two non-equivalent strings are equal, we would probably first check whether they have the same

Introduction to Smalltalk - Chapter 4 - True and False objects, blocks, selection and iteration
 Ivan Tomek 9/17/00

141

Exercises

1.

Introduction to Smalltalk - Chapter 4 - True and False objects, blocks, selection and iteration

Introduction to Smalltalk - Chapter 4 - True and False objects, blocks, selection and iteration
 Ivan Tomek 9/17/00

143

“Initialize total and clear Transcript.”
total := 0.
Transcript clear.
“Keep gathering item prices and displaying them until the total exceeds 100.”
[total <= 100]

whileTrue:

Introduction to Smalltalk - Chapter 4 - True and False objects, blocks, selection and iteration
 Ivan Tomek 9/17/00

Introduction to Smalltalk - Chapter 4 - True and False objects, blocks, selection and iteration
 Ivan Tomek 9/17/00

150

Introduction to Smalltalk - Chapter 4 - True and False objects, blocks, selection and iteration
 Ivan Tomek 9/17/00

151

Iteration methods are defined in class BlockClosure

Introduction to Smalltalk - Chapter 4 - True and False objects, blocks, selection and iteration
 Ivan Tomek 9/17/00

152

singleton - the single instance of a class that does not allow multiple instances
truth table - a table defining a Boolean operation by listing all combinations of true and false operand

Introduction to Smalltalk - Chapter 5 - Numbers
 Ivan Tomek 9/17/00

153

Chapter 5 - Numbers

Overview

VisualWorks library contains many classes representing numbers of various kinds, mainly because
computers internally represent and process different kinds of numbers differently. In addition, computer
programs often require facilities that go beyond basic hardware capabilities and Smalltalk number classes
satisfy these additional needs.

Introduction to Smalltalk - Chapter 5 - Numbers
 Ivan Tomek 9/17/00

154

numbers that have magnitude but cannot be used as vectors - indicators of direction or coordinates of points
in space. (Instances of Complex and

Introduction to Smalltalk - Chapter 5 - Numbers
 Ivan Tomek 9/17/00

155

considerably longer than calculations with

Introduction to Smalltalk - Chapter 5 - Numbers
 Ivan Tomek 9/17/00

157

Introduction to Smalltalk - Chapter 5 - Numbers

Introduction to Smalltalk - Chapter 5 - Numbers
 Ivan Tomek 9/17/00

162

Introduction228.to Smalltalk - Chapter 5 - Numbers

Introduction to Smalltalk - Chapter 5 - Numbers
 Ivan Tomek 9/17/00

168

Figure 5.6. Execution of

Introduction to Smalltalk - Chapter 5 - Numbers
 Ivan Tomek 9/17/00

169

Introduction to Smalltalk - Chapter 5 - Numbers

Introduction to Smalltalk - Chapter 5 - Numbers
 Ivan Tomek 9/17/00

173

When we talked about diff

Introduction to Smalltalk - Chapter 5 - Numbers
 Ivan Tomek 9/17/00

174

t1 := Time millisecondsToRun: [10000 timesRepeat: [2+3]].
t2 := Time millisecondsToRun: [10000 timesRepeat: [“nothing”]].
timeToAddIntegers := t1 - t2

Our complete solution is as follows:

Introduction to Smalltalk - Chapter 5 - Numbers
 Ivan Tomek 9/17/00

176

| t |
Transcript clear.
t := Time millisecondsToRun: [10000 sum].
Transcript show: 'Nonrecursive sum. Time: ', t printString; cr.
t := Time millisecondsToRun: [10000 sumRecursive].

Introduction to Smalltalk - Chapter 5 - Numbers

Introduction to Smalltalk - Chapter 5 - Numbers
 Ivan Tomek 9/17/00

178

Design

The behaviors that we expect of Currency include creation (create a new Currency object),
arithmetic (add or subtract two Currency objects), comparison (equal, not equal, less than, and so on), and
printing (for testing and inspecting). Each of these behaviors will be implemented as a protocol, and the
notion of dollars and cents suggests the use of two instance variables called dollars and cents.

We have now decided all the major features of Currency except where to put it in the class
hierarchy. Currency CMagnitde Tj
-338948 011.76 TD -F0 9.96 Tf
-0.0101 Tc 0.0176 Tw (nbrnce of thesclass) tree. Sice vcrrencyis calndol smplem rithmetic ,we emustcomnsdedrwherhesrthescsuperlass

C u r r e n c y Currency

Introduction to Smalltalk - Chapter 5 - Numbers
 Ivan Tomek 9/17/00

179

Introduction to Smalltalk - Chapter 5 - Numbers
 Ivan Tomek 9/17/00

180

and similarly for cents:.

Introduction to Smalltalk - Chapter 5 - Numbers


Introduction to Smalltalk - Chapter 5 - Numbers
 Ivan Tomek 9/17/00

183

Currency dollars: 100 cents: 3412

creates a Currency object with 100 dollars and 3412 cents but we would prefer a Currency object with 134
dollars and 12 cents. Similarly,

 Currency dollars: 100 cents: -34

creates a strange object that does not make sense, and our comparison message = returns false for

(Currency dollars: 100 cents: 3412) = (Currency dollars: 134 cents: 12)

whereas we would probably expected true.

Introduction to Smalltalk - Chapter 5 - Numbers
 Ivan Tomek 9/17/00

184

cents:

Introduction to Smalltalk - Chapter 5 - Numbers
 Ivan Tomek 9/17/00

185

4. Currency

Introduction to Smalltalk - Chapter 5 - Numbers
 Ivan Tomek 9/17/00

187

origin printOn: aStream.
aStream nextPutAll: ' corner: '.
corner printOn: aStream

and extend it as follows:

printOn: aStream
"Append to the argument aStream a sequence of characters that identifies the receiver. The general format
is originPoint corner: cornerPoint angle: angle."

super printOn: aStream.
aStream nextPutAll: ' angle: '.
angle printOn: aStream

In this definition, super is a special identifier that allows us to access an identically named method

Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek

Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

194

Figure 6.4. Palette with GUI widgets (left), Canvas Tool (top), and unlabeled canvas.Installing the canvas on an application class

Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

195

name for the specification method is windowSpec and this name is already displayed at the bottom of the
window. Use this name unless your application requires several windows which must then be stored as

Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

196

Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

197

Figure 6.8. Defining a new label for the window.

Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces

Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

199

Figure 6.10. UI Palette and its buttons.

We will now paint the Action Buttons required in our interface. Click the Action Button button (!),
move the mouse cursor over the canvas, and click. When an Action Button appears (Figure 6.11), click
again to drop it in place. If you don’t like the button’s position or size, move it or reshape it by dragging its
body or its handles - the small rectangles in the corners - while pressing the <select> mouse button.

Figure 6.11. Widget handles show that the widget is selected. You can now move it, reshape it, define its
properties, or delete it (command cut in the <operate> menu).

Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces

Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

202

Figure 6.15. Details page of Text Editor’s properties.

Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces

Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

204

Figure 6.17. Automatic definition of stubs of widget methods. When the cdef
Q
BT
185.64 135.12 TD
-0.0013 Tc 0.0113 Tw (Figure 6.18. Hierarchy browser of class) Tj
160.56 0 TD /F3 9 Tf
0.0321 Tc 0 Tw (ApplicationSelector) Tj
77.64 0 TD /F0 9.96 Tf
0.03 Tc (.) Tj
-297.84 -23.52 TD -0.0135 Tc 0.7358 Tw (Our next task is to fill in (‘flesh out’) the bodies of the stu) Tj
239.16 0 TD 0.0032 Tc 0.7468 Tw (b methods stored in instance protocols) Tj
-275.16 -11.76 TD /F3 9 Tf
0.0411 Tc 0 Tw (actions) Tj
28.8 0 TD /F0 9.96 Tf
0.0059 Tc 1.4641 Tw (and) Tj
0 Tc 0.03 Tw () Tj
22.32 0 TD /F3 9 Tf
0.0437 Tc 0 Tw (aspects) Tj
31.32 0 TD /F0 9.96 Tf
0.0395 Tc 1.4305 Tw (. Protocol Tc 0.03 Tw () Tj
22.32 5) Tj
otcolsactions

Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

205

Click actions and button
bexist

Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

214

6. The model-dependent relationship has many applications beyond user interfaces. As an example,
consider a collection of physical particles that works as follows: When a particle changes its energy by
some amount

F i g u r e 6 . 2 7 . P s e u d o - v a r i a b l e super must be followed by a message.

Exercises

1. Implement the material covered in this section.
2. Trace and record the complete sequence of message sends following the execution of

Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces


Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

219

Figure 6.8. Top: Standard lines of communication among the three components of the MVC triad
and the meaning of MVC components. Bottom: A single model may have two or more different view-

controller pairs.

Although every widget that displays data has its special model, view, and controller, it is not

Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

221

• initialization - initialize player to ‘X’
• actions - respond to activation of board squares and the Reset button
• private - check for end of game, toggle players after a move

Implementation

We will implement the squares as action buttons with blanks, Xs or Os as labels. We will need to
change button labels at run time as the players click them, and to do this, we need run time access to them.
This access can be gained via the builder which holds a dictionary of all named widgets (widgets assigned

Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

223

((self

Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

226

graphical user interface (GUI)

Introduction to Smalltalk - Chapter 7 - Introduction to Collections
 Ivan Tomek

Introduction to Smalltalk - Chapter 7 - Introduction to Collections
 Ivan Tomek

Introduction to Smalltalk - Chapter 7 - Introduction to Collections

Introduction to Smalltalk - Chapter 7 - Introduction to Collections
 Ivan Tomek 9/17/00

240

#(1 2 3 4 5 3 4 5 3 4 5) do: [:el| Trancript cr; show: el printString] exceptFor: 3

We found that all tests worked but we should, of course, test the method for other kinds of
collections as well. This is left as an exercise but for now, we will generalize our method somewhat: In
some situations, we might want to execute selective enumeration on the basis of a test rather than by
specifying the element explicitly. As an example, we might want to do something with all elements that are
greater than 3.

In this problem, we must allow the second argument to be either a block or any other object, and

Introduction to Smalltalk - Chapter 7 - Introduction to Collections
 Ivan Tomek 9/17/00

241

1. Test conversion messages asSet, asSortedCollection, asr Tf
rderllection

Introduction to Smalltalk - Chapter 7 - Introduction to Collections


Introduction to Smalltalk - Chapter 7 - Introduction to Collections

Introduction to Smalltalk - Chapter 7 - Introduction to Collections
 Ivan Tomek 9/17/00

250

address city: ‘Halifax’

Introduction to Smalltalk - Chapter 7 - Introduction to Collections
 Ivan Tomek 9/17/00

252

TwoDList columns: 3 rows: 5

returns TwoDList (nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil).

Accessing a TwoDList

Just like Array, TwoDList is accessed by at: and at:put:. The difference is that the at: argument is
normally a Point because a position in a table requires two coordinates. The x part of the point is the column
number, and the y part is the row number. The following example illustrates the principle:

| table |
table := TwoDList on: #(12 14 16 21 42 24) columns: 3 rows: 2.
Transcript clear; cr; show: (table at: 1@2) printString. "Prints 21 – element in column 1, row 2."
table at: 2@2 put: 77.able at16 232TD 0.036 T4c 0.872"talnglust Tw uctt: 7774

Introduction to Smalltalk - Chapter 7 - Introduction to Collections
 Ivan Tomek 9/17/00

253

| matrix |

Introduction to Smalltalk - Chapter 7 - Introduction to Collections
 Ivan Tomek 9/17/00

257

Figure 7.14. A three-dimensional array with dimensions 4, 3, 2 (columns, rows, planes).

We can now deduce that if a an n-dimensional array has dimension sizes a1,a ,a a formula for convertingan n-dimensional aindex1,ai T j
2456 -7 .96 TD /F3 6 T f
0 .024 Tc 0 Tw 21,ai T j
2456 -7 .96 TD /F3 6 T f
0 .024 Tc 0 Tw 21 ai T j
2456 -7 .96 TD /F3 6 T f
0 .024 Tc 0 Tw 21ai

i =(ci Tj
217. -0.96 TD /F3 6 Tf
0.024 Tc (Tw 21) Tj
3.36 0.96 TD /F0 9 Tf
0.0311 Tc (1-1)*) Tj999.56 -7.96 TD /F3 6 Tf
0.02 Tc19 n-
 Tw 21,*

1ci Tj
21536 00.96 TD /F3 6 Tf
0.023 Tc (Tw 21)-1-1)* ,*
1ci Tj
212.8 -0.96 TD /F3 6 Tf
0.023 Tc (Tw 21)-2 Tj
38.76 .96 TD /F0 9 Tf
0.0311 Tc (1-1)*) Tj999.56 -7.96 TD /F3 6 Tf
0.02 Tc19 n-3 Tj
38.76 .96 TD /F0 9 Tf
0.0308 Tc19 *.(,*) Tj999.56 -7.96 TD /F3 6 Tf
0.024 Tc (1) Tj
3.36 0.96 TD /F0 9 Tf
0.0321 Tc 0-.0203 Tw 21+.(, +(ci Tj
23072 07.96 TD /F3 6 Tf
0.024 Tc 0 Tw 21) Tj
3.36 0.96 TD /F0 9 Tf
0.0311 Tc (.0206 Tw , -1) *) Tj9922408 7.96 TD /F3 6 Tf
0.024 Tc 00.3512 Tw , 2 Tj
5.04 -.96 TD /F0 9 Tf
0.03075 Tc19. Tw 21*

ci Tj
212.8 -0.96 TD /F3 6 Tf
0.024 Tc 0 Tw 211-1)*

the cases.tht iweainvestigated above - oned,thwod,tandthree-dimensional array sAfter findingathe generl aformula,iweawillnow dimprove ft o Cspeed up.the calculaton sof.the index. Tj
0-36-211.76 TD -0.0109rto ,
02847r24 Tc nn4Tj
2456r99s3 Tc 0.0e.3 6 Tf
0.024 Tc 0 Tw 211-1)*

1

 Tw 21,*
1ci Tj
21536 00.96 TD /F3 6 Tf
0.023 Tc (Tw 21)-1-1)* ,*

1ci Tj
212.8 -0.96 TD /F3 6 Tf
0.023 Tc (Tw 21)-2 Tj
38.76 .96 TD /F0 9 Tf
0.0311 Tc (1-1)*) Tj999.56 -7.96 TD /F3 6 Tf
0.02 Tc19 n-3 Tj
38.76 .96 TD /F0 9 Tf
0.0308 Tc19 *.(,*) Tj999.56 -7.96 TD /F3 6 Tf
0.024 Tc (1) Tj
3.36 0.96 TD /F0 9 Tf
0.0321 Tc 0-.0203 Tw 21+.(i Tj
212.8 -0.96 TD /F3 6 Tf
0.023 Tc (Tw 21)-2 Tj
38.76 .96 TD /F0 9 Tf
0.0311 Tc (1-1)*) Tj999.56 -7.96 TD /F3 6 Tf
0.02 D /F3 6 Tf
0.024 Tc 00.3512 Tw , 2 Tj
5.04 -.96 TD /F0 9 Tf
0.03075 Tc19. Tw 21*) Tj99852 07.96 TD /F3 6 Tf
0.024 Tc 00.3512 Tw , 1 T Tj
6.32 0 96 TD /F0 9 Tf
0.0323 Tc 0-.0205 Tw 21+(ci Tj
212.8 -0.96 TD /F3 6 Tf
0.024 Tc 0 Tw 211-1)*

13 6 Tf.56 Tf
0.023 Tc (Tw 21)-3 Tj
38.76 .96 TD /F0 9 Tf
0.0308 Tc19 *.(,*) Tj999.56 -7.96 TD /F3 6 Tf
0.024 Tc (1) Tj
3.36 0.96 TD /F0 9 Tf
0.0323 Tc 0-.0205 Tw 21 +(ci Tj
21536 00.96 TD /F3 6 Tf
0.023 Tc (Tw 21)-1-1)* 1ci Tj
21536 6 Tf
0.024 Tc (1) Tj
3.36 0.96 TD /F0 9 Tf
0.0323 Tc 0-.0205 Tw 21+(ci Tj
212.8 -0.96 TD /F3 6 Tf
0.023 Tc (Tw 21)-2 Tj
38.76 .96 TD /F0 9 Tf
0.0311 Tc (1-1)*) Tj999.56 -7.96 TD /F3 6 Tf
0.02 T -0.35047 06024 Tc 00.351la is 27Tj
5.04 -.96 TD /F0 9 Tf
0.03075 Tc19. Tj99.18 -0.96 TD /F3 6 Tf
0.02 TD /F0 9 Tf
0.0323 Tc 0-.0205 Tw 21+(ci T1)* ,*
1ci Tj
21536 00.96 TD /F3 6 Tf
0.023 Tc (Tw 21)-1-1)*

1-1)*

11 1-1)*

,*
1ci Tj
21536 00.96 TD /F3 6 Tf
0.023 Tc (Tw 21)-1-1)*

1-(,*) Tj99 6 Tf
0.02 Tc19 n-3 Tj
38.76 .9lty,that it28.76 . =D /F0 9 5 Tf
0.03075 Tc19 *
1ci Tj
212.8 -0.96 TD /F3 6 Tf
0.023 Tc (Tw 21)-2 Tj
38.76 .96 TD /F0 9 Tf
0.0311 Tc (1-1)*) Tj999.56-74.22 0296 TD /F3 6 Tf
0.0 llty,th(etc.sult40 /60.2 Tf, 1 T6215 T9c Tf
4 TD /F0 9 Tf
0.0311 Tc(1-1)*) Tj3852 07.96 TD /F3 6 Tf
0.0242 Dlty,that it28.76 . =D /F0 9 5 Tf
0.03075 Tc19 *) Tj99850.03075 Tc19. Tj99.18 -0.96 TD /F3 6 Tf
0.02 TD /F0 9 Tf
0.0323 Tc 0-.0205 Tw 21+(ci T1)*1-.0215 T9 Tj99.18 -0.96 TD /F3 6 Tf
0.02lty,that it28.76 . =D /F0 9 5 Tf
0.03075 Tc19 *

1-.0215 T9999.56 -7.96 TD /F3 6 Tf
0.02 Dlty,that it28.76 . =D999.56-7.92 /2 T48 TD /F30 996 TD
0at i3410.024 8.76 .andsult40 /20.88 TD /F3 6 Tf
0.0222ty,that i0
0.06 .C =Dc6 .962 T Tf
0.03075 Tc19 *

1-1)*

.ult40. 523eiable 6 .9637 Tf
0r1.0215 T9999.56 -727603075 Tc19. sizes99.5420.6TDr1.0215 0 996 TD
0113 u c 6 5 8 0 T D
 1

Introduction to Smalltalk - Chapter 7 - Introduction to Collections
 Ivan Tomek 9/17/00

258

Implementation

Creation protocol

Introduction to Smalltalk - Chapter 7 - Introduction to Collections
 Ivan Tomek 9/17/00

Introduction to Smalltalk - Chapter 7 - Introduction to Collections
 Ivan Tomek 9/17/00

Introduction to Smalltalk - Chapter 7 - Introduction to Collections
 Ivan Tomek 9/17/00

265

1. Since we access the

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets
 Ivan Tomek 9/17/00

269

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets
 Ivan Tomek 9/17/00

270

never redefine it in any subclass. Method basicAt: has exactly this role. If everybody plays by the rules,
basicAt: thus has a guaranteed single definition that we can always rely on. When you examine the library,
you will find that there are quite a few basic... methods.

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets
 Ivan Tomek

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets
 Ivan Tomek 9/17/00

274

(items inject: (Currency cents: 0)
into: [:total :item | total + item price]) displayString

Note the use of inject:into: with Currency objects, and the displayString message - you may have
expected printString. displayString

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets
 Ivan Tomek 9/17/00

277

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets
 Ivan Tomek 9/17/00

278

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets
 Ivan Tomek 9/17/00

282

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets
 Ivan Tomek 9/17/00

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets
 Ivan Tomek 9/17/00

284

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets


Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets
 Ivan Tomek 9/17/00

290

“Initialize items to a suitably sized sorted collection. Sort alphabetically by name.”
items := SortedCollection sortBlock: [:item1 :item2| (item1 name) < (item2 name)].
self execute

Exercises

1. Find and examine all references to sortBlock: and determine which of them are instance messages: and
why they are used.

2. Study and describe how SortedCollection adds a new element.
3. Browse SortedCollectionWithPolicy and explain how it differs from SortedCollection.
4. Formulate the sort block for storing entries of the library catalog from the Section 8.3 in a

SortedCollection using the alphabetical order of author names. Make up any necessary accessing
methods.

5. Write a code fragment to create ten random rectangles and sort them in the order of increasing area.
6. (I t e m s e q u e e S l a g e t M a k , o r t t i f S l a g e t M a k f r e q u e r t b l M a k e r t n e e S f i r g e t M a k . E x n d o d e r t b p r e v i o u s t e) S t u 5 4 1 T 1 5 () T j
 t h e a l p h a b e T j
 a s e r t b p r i m t a l o g o m p a r i s f S l 7 3 t b l M a k e r t n e e S f i r g e t M a r t b l M 3 t b c i r c u m / F 3 9 f S l 7 3 t b s e c o n d n e e S f i r g e t M a r 6 .

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets
 Ivan Tomek 9/17/00

291

8.6 The List collection

Class List

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets
 Ivan Tomek 9/17/00

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets
 Ivan Tomek 9/17/00

296

F i g u r e 8 . 1 2 . D e s i r e d u s e r i n t e r f a c e f o r T e x t e x a m p l e .

Solution: This very simple application requires only an application model class. After painting the user

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets
 Ivan Tomek 9/17/00

300

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets
 Ivan Tomek 9/17/00

302

contentsFromUser
"Answer an Image with the contents of a user-specified area on my screen."

^self completeContentsOfArea: Rectangle fromUser

This shows that if we have a window rectangle (call it windowRectangle) we can obtain its rectangle by

Screen default completeContentsOfArea: windowRectangle

Figure 8.13. Single selection list (left) and multiple selection list (right).

Single selection lists

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets
 Ivan Tomek 9/17/00

304

The basic behaviors of list widgets are: create a list widget with labels, add a new label, remove an
existing label, sense change of selection, get current selection, and access labels.

The model of a single selection list (the object on which the list widget is dependent) is normally
an instance of SelectionInList

Figure 8.16. Selection window for Example 2.

Solution:

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets
 Ivan Tomek

Introduction to Smalltalk - Chapter 8 - More Sequenceable Collections, List widgets

Introduction to Smalltalk - Chapter 9 - Sets, bags, and dictionaries
 Ivan Tomek 9/17/00

315

hash should be redefined in all classes that redefine =. For efficiency of accessing in sets, two objects that
are not equal should have a different hash value. However, this is not required and often not guaranteed.

Introduction to Smalltalk - Chapter 9 - Sets, bags, and dictionaries
 Ivan Tomek

Introduction to Smalltalk - Chapter 9 - Sets, bags, and dictionaries
 Ivan Tomek

Introduction to Smalltalk - Chapter 9 - Sets, bags, and dictionaries
 Ivan Tomek

Introduction to Smalltalk - Chapter 9 - Sets, bags, and dictionaries
 Ivan Tomek

Introduction to Smalltalk - Chapter 9 - Sets, bags, and dictionaries
 Ivan Tomek 9/17/00

324

name isEmpty ifTrue: [^false]. "Exit and terminate loop - user indicated end of entry."
price := (Dialog req

Introduction to Smalltalk - Chapter 9 - Sets, bags, and dictionaries
 Ivan Tomek 9/17/00

326

An obvious example of the need for dictionaries is an assembler program which translates a source
program into machine instructions, replacing symbolic instruction names with their binary opcodes. This
process is based on associating symbolic names with binary opcodes which could be described as

‘add’ -> 2r10010001

Introduction to Smalltalk - Chapter 9 - Sets, bags, and dictionaries
 Ivan Tomek 9/17/00

327

the second association replaces the first one because its key is equal to the first key.
IdentityDictionary is an important subclass of Dictionary that uses equivalence instead of equality,

and is internally represented as a collection of keys and a collection of values rather than as a set of
associations. An IdentityDictionary is often used as a kind of a knapsack to carry around a variety of
identifiable objects that could not be predicted when a class was designed and consequently could not be
declared as instance variables. To put this differently, an IdentityDictionary

Introduction to Smalltalk - Chapter 9 - Sets, bags, and dictionaries
 Ivan Tomek 9/17/00

328

which has the same effect as

dictionary at: key put: value

Removing associations

Introduction to Smalltalk - Chapter 9 - Sets, bags, and dictionaries


Introduction to Smalltalk - Chapter 9 - Sets, bags, and dictionaries
 Ivan Tomek 9/17/00

332

aStream

Figure 9.8. Desired interface of the two-way dictionary.

Introduction to Smalltalk - Chapter 9 - Sets, bags, and dictionaries
 Ivan Tomek 9/17/00

334

The pop up menu of both lists of original words is as in Figure 9.9. Its commands allow the user to

Introduction to Smalltalk - Chapter 9 - Sets, bags, and dictionaries
 Ivan Tomek 9/17/00

335

Instance variables are

<lang1> - name of the first language, a String
<lang2> - name of the second language, a String
< lang1lang2 > - one language dictionary, a

Introduction to Smalltalk - Chapter 9 - Sets, bags, and dictionaries
 Ivan Tomek 9/17/00

336

Deletion will be implemented by instance method language1Delete: aString (and a symmetric method
language2Delete: aString). The method deletes the whole language1 association with key aString, and
propagates the change to language2. Since this and similar messages are sent by the pop up menu after the
user has made a selection in the user interface, we can assume that aString is present in the set of keys of
language1. We can thus use removeKey: and similar messages without worrying about the ifAbsent: part.
The algorithm for responding to pop up command delete when a word in language 1 is selected is as
follows:

1.

Introduction to Smalltalk - Chapter 9 - Sets, bags, and dictionaries
 Ivan Tomek 9/17/00

Introduction to Smalltalk - Chapter 9 - Sets, bags, and dictionaries
 Ivan Tomek 9/17/00

341

Figure 9.13. State transition table of a JK flip-flop.

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

344

Chapter 10 - Streams, files, and BOSS

Overview

Sequenceable collections are often processed in linear order, one element after another. Although
linear access can be performed with collection accessing and enumeration methods, Smalltalk library

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

345

• Reading and writing of files.

Execution of each of these tasks involves some or all of the following operations:

•

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

348

There are methods that only work with external streams, methods that can be used with read streams but not
with write streams, and so on. Most of these limitations are obvious and natural.

Creation

Internal streams are usually created with class methods on: with:, or by messages addressed to the
underlying sequenceable collections; ra -0By,streams are ureated with cnd Tj
0 Tc -.03 Tw () Tj
3.000 TD /F3 9 Tf
0.0327 Tc 0 Tw (on:)from:toI c n d T j
 0 T c - . 0 3 T w () T j
 3 2 1 0 T D / F 3 9 T f
 0 . 0 3 1 4 3 T c 0 T w (w i t h :) f r o m : t o

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

350

upTo: anObject - repeats sending next until it reaches the first occurrence of anObject or the readLimit. It
returns a collection whose elements2 are the elements retrieved by the consecutive next messages
from the start of the iteration up to but not including anObject. The pointer is left pointing at
anObject so that the next next

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

351

isEmpty - tests whether position = 0, in other words, refers to how much of the collection has been viewed.

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

352

 (WriteStream with: '

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

354

nextPutAll: 'Yours,'; cr; cr; cr;
nextPutAll: (Dialog request: 'Enter Adjunct Librarian''s name' initialAnswer: '');

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

357

10.4 Example: A Text filter

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

358

2. Repeat for each position of the input stream beginning from the start:
a. For each element of the dictionary do:

i. Increment current position holder for match string.
ii. Compare input string and match character.

1. If no match, reset current position holder for match string to 0.
2. If match, check if this is the last character to match.

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

359

ch := InputStream next.
“Copy the input character into the output stream for now.”
OutputStream nextPut: ch.
“Now try to match against successive entries in the dictionary.”
MatchDictionary

keysAndValuesDo:

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

360

1. Extend TextFilter to accept blocks as replacement arguments as stated in the specification.

10.5 Example: Circular Buffer

In computing terminology, a buffer is a memory area that accepts data from one process and emits
it to another process; the two processes work at their own speeds. An example of the use of a buffer is
reading a block of data from a file into memory where it is processed one byte at a time by a program.
Another example is a computing node on a network that accepts parcels of data arriving in unpredictable
amounts and at unpredictable times, processes them one byte at-a-time, and possibly sends the data on to
another network node.

The hardware implementation of buffers often has the form of a special memory chip with a fixed
number of memory locations with pointers to the first byte to be retrieved, and to the location where the
next byte is to be stored as in Figure 10.8. When a new byte arrives, it is stored at the next available
location and the pointer is incremented, and when a byte is required from storage, it is removed from the
location pointed to and the pointer incremented.

Figure 10.8. Buffer as a fixed size array with pointers to the next available byte and the next available
location.

In reality, of course, a byte read from the buffer is not ‘removed’ and only the changed value of the
pointer indicates that the byte has been used. Similarly, an ‘empty’ position is not really empty but the new

lomuctr Buarh pmeonc the fomenadic of medingsn of bue pointion isbthe chze ar bue poffer i Tj
36 -11.76 TD -00056 Tc 0.4192.6Tw (The haffer isdoenot rof course, a haveo) Tj
T*0Tc 0.0366Tw () Tj
10.646 -3 TD -0.0161 Tw 0.4199 Tw (In stspecial merdware imip wia)an Fifactit isusuly em not r.Tj
-208.06 -35.76 TD -0.0122 Tc 1.6722 Tc (In rstd fit isc � stjust memory arrngi to)t themtr t them ccular Baffer isea t. lementatg terh procend
anccular Baffer isstrtioe 10ithem purintar bue stoecon.

 Ivalementat comcular Baffer isbad one fixed s-ze array w. ratenssef the

spoca, a haveo

the nqu st onenot rof courionandeeme161 wfacaeinef the
lelt roaal merdware im,ugtwlsfunstomhalitbushhemess and

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

361

isFull

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

363

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

364

Figure 10.10. Main classes used in file processing.

The cookbook procedure for processing data stored in a file is as follows:

1.

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

365

Class Filename is an abstract class and its concrete subclasses (MaxFilename, PCFilename and its
subclasses, and UnixFilename) implement the platform-specific behavior needed on your machine, such as
parsing platform-specific syntax of file names. However, you never need to deal with these concrete
subclasses because Filename automatically sends all platform-dependent messages to the subclass
representing your platform. This is done via Filename’s class variable DefaultClass which holds the name
of the appropriate Filename class. Removing explicit dependence on one platform makes it possible to write
programs that will run on different platforms. This arrangement is similar to the implementation of strings.

External streams perform data transfer operations. Instances of external streams are never created
by class messages to external stream classes but by messages to the Filename

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

366

Figure 10.11. Possible result of typing ‘*.hlp’ in response to Dialog requestFileName:.

The proper use of the combination of requestFileName: and asFilename should thus be something like

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

368

delete - as in fileName delete - deletes the Filename object (a file or a directory). As an example of its use,

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

371

Example 3: Let user delete a file from a list
Problem: Implement a method to display the file names in the current directory in a multiple choice dialog,
and allow the user to delete a file
Solution: This problem does not require a specific Filename and we will implement it as a class method in
Filename, following the example of several existing *fromUser methods. The method will obtain the current

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

373

This explains how the limited number of external stream classes (Figure 10.8) can provide such a
variety of accessing modes - the type of access is controlled by an instance of FileConnection. The other
stream creation messages are similar.

Since a file and its mode of access are two separate things, a file initially accessed via one kind of
stream may be closed and accessed again via another type of stream. As an example, we have already seen
that you may open a file for writing, store some data in it, close it, and open it for reading later.

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

374

Positioning

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

375

| stream |
stream

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

380

The basic definition of storeOn: in Object simply generates messages to create a new instance of
the receiver and further messages to initialize its variables. The interesting part of the definition is that it
asks each component of the receiver to store itself. Typically, this results in the component asking its own
components to store themselves, and so on. You can see how this can create problems if the structure is
circular. The definition of storeOn: is as follows:

storeOn: aStream
"Append to aStream an expression whose evaluation creates an object similar to the receiver. This is

Introduction to Smalltalk - Chapter 10 - Streams, files, and BOSS
 Ivan Tomek 9/17/00

381

Figure 10.13. The definition of storeOn: is recursive.

As an illustration of the operation of this recursive definition, consider using storeOn: on a literal
array containing string elements: The storeOn:

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

384

message
context

message
context

message
context

message
context

message
context

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

385

In essence, a stack is an ordered collection whose elements can only be accessed at one end. If we
treat the start of the collection as the top of the stack, addFirst: performs push and removeFirst performs
pop. Alternatively, we can use the end of the OrderedCollection as the top of the stack with addLast: for
push and removeLast for popOrderedCollection asapproachforms 327j
225.12 0 asapproach39.96 TWorks3roIrest(32ra -0 .09 ,eET
90 517ce, 231tack0tackre f
B05826 495tack isoach37496 TWorks7 Tf
0.0T
0.) Tj
15. t

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

388

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

390

a message to the Transcript. All test methods of a class are assumed to be in class protocol testing, and each
test must return true if it succeeds and false if it fails.

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

391

As we know, class names are returned by Smalltalk classNames. To obtain information about
classes, we already learned to use category Kernel - Classes

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

394

a

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs


Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

396

c.

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

398

Modeling randomness

We will assume that the unpredictable parts of the behavior of the problem can be described by a
probabilistic model. In other words, we will assume that we can formulate a mathematical function

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

400

queue length. The output will, of course, be left to the application model (class BankSimulation) to display.
This way, if we want to change the user interface (output of results) or make our simulation a part of a
larger scheme, the domain objects can stay the same and only the application model must be changed.

Preliminary design of classes and their responsibilities

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

403

• lowerLimit: anInteger upperLimit: anInteger.
• Accessing - implemented by

• next. Returns random integer.

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

405

4. No complete match, copy character from string to result, increment position in string and result.
5. Compare position 2 in pair1 ($b) with first character of string - match.
6. Compare position 1 in pair2 ($a) with first character of string key; no match.
7. We have a complete match. Select the longest replacement possible, changing result to ‘xx’.
8. Continue in this way until the last character in string. At this point, there are two matches and two

possible replacements. The longer one is selected giving result = ‘xxcdyy’ as expected.

This scenario works as expected. But wait - the behavior in the following scenario does not quite
meet our expectations.

Scenario 2: Filtering string = ‘abcd’ with match/replacement pairs pair1 = ‘bc’->‘xx’, pair2 = ‘abcd’->‘yy’
Assume string = ‘abcd’ and match/replacement pairs pair1 = ‘bc’->‘xx’string = abcd’STw (key; no maTj
10.12 0 TD722F0 9.96aTf
-0. Tfobtaed. Butmonue T Tfsed and match/Tj
69yyent pairs) �s selected giving string = Assume as expec 0.sfinishe2 0 TD36.3beD14-220..211F0 9.96 Tf
0.0256 Tc 0.0044 Tw (to) Tj
12.84 0 TDng = ‘ t o t B n c t o f
 - 2 u e u 0 n T j
 1 T * d r T f w 4 0 T D n 4 2 7 T f
 - 0 . 0 W h e 0 6 i t D - 0 . , u s e 5 2 i t D s c t i n o n g
 - 2 1 d 1 1 8 T p r a t e l 9 T w () T . a r i o 2 : u e T T f s e d a n d 2 1 8 8 0 3 T f l l 2 4 8 2 a i t e w B 0 2 T c e 6 2 m u l t e l 9
 - 2 1 d l g i g i t h m c 0 T T f 2 5 1 . 9 6 D 0 . 0 4 2 q m 0 T T 5 3 s c (S T w (a n d 0 7 6 2 0 3 T f l l 3 5 6 2 0 3 n 9 r i g c a n r e f u l l y w e 6 8 5 u t k o n g e 9 l o o k 6 t T j
 - 2 o b j 0 . s / F 2 a c t o c 0 . 0 1 1 8 s e d i 0 t e e 2 T j k 4 s r T f 5 2 2 2 - > ª 3 1 1 - 1 1 . 7 s u b p p o d w i n t n g I n a d 9 i . 0 . 0 6 s c t 4 2 e a m e . 0 9 0 3 T c (2 8 T j
 - 2 i 6 s c t k e e p t D i k o f
 - 2 i g i t B w (4 2 T - > . 0 9 T w 2 1 (7 4 w e T j
 1 1 D 0 t e e 2 T j k 4 r T f 8 7 0 T D n 4 2 1 T D 0 . 0 0 a l s o / F 2 a T j
 1 1 D 0 2 4 2 0 o 3 e r - 1 a s e d i T c 1 9 8 4 2 1 6 0 T D 0 . 0 4 2 2 - 6 7 T j
 1 1 c t e d > ‘ y s t r i n t o) T j
 D / F 2 9 0 8 T f
 - 0 . 0 0 8 3 T . 2 1 4 1 . 4 3 3 3 T w (C o n t i n u e i n 1 3 1 8 0 3 T f 4 n 6 4 7 T f
 - 0 . 0 A > u e u 0 w h o e 5 2 e 6 r o d s . 2 - 1 0 9 l l 0 . 0 . 0 w o f p l d w i a y 6 T D d , e t c o c i 0 2 9 5 - 1 1 8 5 u c a \ i . T j
 1 1 D 0 t e e 2 T j k 4 s t r i n g =) T j 1 3 - T i T D 0 . 0 4 2 M n g s e s I n 4 0 T . 1 7 4 T c (W a i j T - 4 0 7 T - 4 6 . 4 3 3 3 T w (C o n t i n u e i n 1 f 9 7 0 T D n m 3 T - T i n 9 r > . 0 9 i f w o u) T . 0 i 5 2 0 0 c l e t c v a r a t b l 0 n T j
 1 T - 9 n g s 0 T - 4 6 . 3 e r - 1 a s e d i T c 1 9 8 4 2 1 6 0 T D 0 . 0 4 2 2 - 6 7 T j
 1 1 c t e d > ‘ y s t r i n t o) T j
 D / F 2 9 0 8 T f
 - 0 . 0 0 8 3 T . 2 1 4 1 . 4 3 3 3 T w (C o n t i n u e i n 1 0 8 o u l d w i n g 8 9 . 9 6 0 . 0 A > 0 9 l l 0 . 0 . 0 6 o f a u e t c o c i 0 2 9 5) T j w 2 - 1 f u l l y 6 T D d , e 0 9 � d y ’) 2 1 T w () T . n g) i s c 8 5 u b e 0 0 c l e t c T j
 1 1 D 0 t e e 2 T j k 4 r T 1 2 f i n i s h e T 1 7 2 = � v a r a t b l 0 u c a e T c 0 6 1 . 0 8 - > ‘ y s t r i n g =) T j 2 4 8 0 3 T f 0 = � R 2 2 d y A s e R 1 T w () T . T j
 1 1 � . 0 0 4 4 T w (t o) T j
 1 2 2 2 2 - > (n T j
 1 T - 1 7 T - 0 8 - - 2 3 2 2 2 - s e d a n d 2 1 2 2 2 - > ¬ 9 f
 - 0 . 0 W . 0 9 o u l d w b D i k g r T j
 d w e c a n 0 0 f u l l y 6 d e s c r i b e g i v i n g s c t e 8 g c 2 e d u r e 0) T j
 - s : j
 1 1 D 0 2 4 2 2 2 - s e d a 5 4 9 i n i s h e 2 0 T 2 1 T j
 1 T - 7 e d > ‘ y s t r i n t o

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

407

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs


Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

411

SortedLinkedList (LinkNode 3 LinkNode 13 LinkNode 33)
SortedLinkedList (LinkNode 0 LinkNode 3 LinkNode 13 LinkNode 33)

Finally, we must test that SortedLinkedList works even with non-default sort blocks and we thus
define a new SortedLinkedList creation method called sortBlock: and modify our test program to create a
new list with the same elements sorted in descending order:

| sll |
Transcript clear.
sll := SortedLinkedList sortBlock: [:x :y | x > y].
Transcript show: sll printString; cr.
sll add: 3.
Transcript show: sll printString; cr.
sll add: 33.
Transcript show: sll printString; cr.
sll add: 13.
Transcript show: sll printString; cr.
sll add: 0.
Transcript show: sll printString

The test produces

SortedLinkedList ()
SortedLinkedList (LinkNode LinkNode 3)
SortedLinkedList (LinkNode LinkNode 33 LinkNode LinkNode 3)
SortedLinkedList (LinkNode LinkNode 33 LinkNode LinkNode 13 LinkNode LinkNode 3)
SortedLinkedList (LinkNode LinkNode 33 LinkNode LinkNode 13 LinkNode LinkNode 3 LinkNode LinkNode
0)

in the Transcript 0064
agan tconfirmsthe Tcorrectness ofour timpementstion

 Man tlessons ear.ned

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

412

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

416

i) Add root

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

417

add: 17;
add: 49;
add: 32;
do: [:node | Transcript show: node value printString; cr]

which produces

8
14
21
17
36
32
49

Main lessons learned:

•

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs


Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

421

1 <D8 03> push 3
3 <D8 03> push 3
5 <DF 00> no-check send +
7 <66> pop
8 <D8 05> push 5
10 <CC 00> no-check send factorial
12 <45> pop; push self
13 <65> return

In conclusion, let’s note that both Parser and Scanner are in the library and you can subclasses

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs


San Francisco

New York Toronto Montreal

Denver

Dallas

Chicago

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

424

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

425

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

428

We leave it to you to implement the algorithm as an exercise.

Main lessons learned:

Introduction to Smalltalk - Chapter 11 - Stacks, queues, linked lists, trees, and graphs
 Ivan Tomek 9/17/00

429

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 9/17/00

431

Chapter 12 - Developing user interfaces

Overview

The group of classes supporting graphical user interfaces (GUIs) is one of the most complex parts
of VisualWorks and its detailed coverage is beyond the scope of this book. Fortunately, to be able to use the
tools for routine applications and to create interesting extensions of the widget library, you only need to
understand a limited number of concepts, and specialized books are available for more advanced uses.

The first requirement for creating a user interface is to be able to draw objects such as lines,
widgets, and text on the screen. VisualWorks perspective is that drawing requires a surface to draw on (such
as a computer screen or printer paper), the graphical objects being drawn, and an object that does the
drawing and holds the parameters that describe the drawing context (such as fonts, colors, and line widths).

Being able to draw an object on the screen is, however, only a part of a typical GUI. Unless the
displayed windows are completely passive, the user must also interact with them via the mouse and the
keyboard. A user interface must also ensure that the display reflects changes of the displayed data model,
and that damage caused, for example, by resizing a window is automatically repaired.

To implement automatic response to model changes and user interaction, Smalltalk uses the
model-view-controller paradigm - MVC for short. The model part of the MVC triad holds data and provides

GUIs-ay reflece to drulical objsxt (suculine wonrks n Tj
-36 -1.28 TD /F0 9.96 Tf
-0.002 Tc70.057 Tw222The firsomaseto Smaiileddns a-36 -166348 0.0557 T010.8575 130(and threateramet paciplthe diWorks perspenterfaces (GUIsovides) Tj
0 backof cnd114.6 -29rep8.S24f
-0.03.804c 0.887remenrfaomiz T32 metplayed wiilontrir 164(aeo)w onrectInols for routine appli, noces lecmmcrejhment autom0 -11.76 T -0.0132 c05.044involvir morese ag contexuteanheeTw0et but 6 Tw (undir ml partse agr of cteaniWofule)interactscr36 -11.76 T6 -0.0009588c72.042Dces (supporting graphical oobject on the sc Tw (asst ctaskhangesiffatenrklodeuael changodenctract wcalt-36 -11.76 09 -0.01328715 1.4631 ffatenrkdnd ogrametction, Smaoutroae outesiffatenrlynnd prs andmet paciplthe dective is that drawing rejhment1 T8
0.0281 Tc a (such) Tj
0 -11.76 f
-0.001.925c 1.4631 that dUIs-ay ,aphical oace isof the die that the display realynnetharibe the drawing and hothe paramedel,

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 9/17/00

434

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 9/17/00

436

To deal with the two different modes of operation that affect the result of clicking a desk button
(switching to a different desk versus renaming it), we must also keep track of the mode. We will represent it
by a Symbol which will be identical to the name of the method that executes the operation so that we can
execute the method by the

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 9/17/00

437

• moveTo: is triggered by the Move button via the move method (below). It displays
prompts to select the window to be moved and the destination desk, unmaps the window,
and assigns the number of the specified desk to this window in the registry.

• openBrowser and openWorkspace buttons open the Browser and the Workspace.
• rename requests a new name for the currently selected desk button and assigns it to the

button as its label.
• move asks the user to select a window and click the destination desk button. The internal

assignment of the desk is performed by updateDesk:.
• Private support methods.

• updateDesk: is trigga tosupp

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 9/17/00

439

| window |
(waitingApps at: currentDesk) remove: anApplication.cg816 Tw (Iow |) Tj
-4.92 -1:= TD 0.0557 Tc 0 Tw 3
4.92(curre162ation.) Tj
-15

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek Ó9553

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 9/17/00

442

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 9/17/00

443

aRectangle displayOn:

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 9/17/00

444

gc paint: paint.
startx := (Dialog request: 'Upper left x' initialAnswer: '30') asNumber.
starty := (Dialog request: 'Upper left y' initialAnswer: '30') asNumber.
side := (Dialog request: 'Side' initialAnswer: '20') asNumber.
“Disply.”
^gc displayRectangle: (startx @ starty extent: side @ side)

Main lessons learned:

• All display within a window is performed by an instance of GraphicsContext.
• GraphicsContext is central to everything related to display of visual components.
• In addition to being the drawing engine, a GraphicsContext also holds display parameters such as line

width, paint, and fault.
• Display parameters stored in the graphics context can be controlled programmatically.

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 9/17/00

447

Introduction to Smalltalk - Chapter 12 - Developing user interfaces


Introduction to Smalltalk - Chapter 12 - Developing user interfaces


Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 9/17/00

452

circle and the application changes its diameter, we expect that the circle will be automatically redrawn.
The previous sections do not give any hints as to how this could happen but we will see that the
principle of dependency

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 9/17/00

453

Main lessons learned:

Introduction to Smalltalk - Chapter 12 -
Q
BT
199.56 247.92 TD
0.0061 Tc 0.0239 Tw (Figure 12.10. The view holder action button on the UI Palette.) Tj
-109.56 -23.52 TD -0.0228 Tc 0 Tw (Design) Tj
ET
90 222.84 27.96 0.48 re f
BT
90 200.88 TD
/F5 9.96 Tf
-0.0122 Tc (Class) Tj
22.08 0 TD /F0 9.96 Tf
0 Tc 0.03 Tw () Tj
4.92 0 TD /F3 9 Tf
0.0053 Tc 0 Tw (TwoImages) Tj
46.56 0 TD /F0 9.96 Tf
-0.0062 Tc 2.4791 Tw (is the application model class. It will have instance variables to hold the subview) Tj
ET
90 199.32 73.44 0.6 re f
BT
90 189.12 TD
0.0433 Tc 0 Tw (() Tj
3.36 0 TD /F3 9 Tf
0.03 Tc (imageView) Tj
44.16 0 TD /F0 9.96 Tf
-0 Tc 0.3903 Tw (), the currently displayed image () Tj
133.8 0 TD /F3 9 Tf
0.0426 Tc 0 Tw (image) Tj
24.72 0 TD /F0 9.96 Tf
-0.01 Tc 0.4873 Tw (), and the two images selected by the user on the screen) Tj
-206.04 -11.76 TD 0.0433 Tc 0 Tw (() Tj
3.36 0 TD /F3 9 Tf
0.0415 Tc (image1) Tj
29.76 0 TD /F0 9.96 Tf
0.0059 Tc 1.2241 Tw (and) Tj
0 Tc 0.03 Tw () Tj
21.84 0 TD /F3 9 Tf
0.0415 Tc 0 Tw (image2) Tj
29.76 0 TD /F0 9.96 Tf
-0.0048 Tc 1.2348 Tw (). During initialization,) Tj
0 Tc 0.03 Tw () Tj
97.92 0 TD /F3 9 Tf
0.0053 Tc 0 Tw (TwoImages) Tj
46.56 0 TD /F0 9.96 Tf
-0.0194 Tc 1.3334 Tw (will ask the user to select two rectangles on the) Tj
-229.2 -11.76 TD -0.0075 Tc 0.0203 Tw (screen and save the corresponding images in) Tj
180 0 TD /F3 9 Tf
0.0415 Tc 0 Tw (image1) Tj
29.76 0 TD /F0 9.96 Tf
0.0059 Tc 0.0241 Tw (and) Tj
19.44 0 TD /F3 9 Tf
0.0415 Tc 0 Tw (image2) Tj
29.76 0 TD /F0 9.96 Tf
-0.0094 Tc 0.1594 Tw (. When the user clicks an action button, the) Tj
-258.96 -11.76 TD -0 Tc 0.0307 Tw (corresponding action method assigns the appropriate image to) Tj
249.72 0 TD /F3 9 Tf
0.0426 Tc 0 Tw (image) Tj
24.72 0 TD /F0 9.96 Tf
-0.0077 Tc 0.0377 Tw (and sends the) Tj
58.68 0 TD /F3 9 Tf
0.0394 Tc 0 Tw (changed) Tj
34.8 0 TD /F0 9.96 Tf
-0.0293 Tc 0.0593 Tw (message.) Tj
-331.92 -11.76 TD -0.0121 Tc 0.1381 Tw (Initialization must also create an instance of 4ges9t(claso) Tj
328.68 0 TD /F3 9 Tf
0.2753 Tc 0 Tw IimageView), assig 4/F0to I , a n d
 ssig 4/F0ele 4gs/F0emodel .(

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 9/17/00

457

width := aGraphicsContext widthOfString: string.
aGraphicsContext displayString at: (center x (width/2)) @ 50)]

ifFalse: “Display currently selected image.”
[aGraphicsContext displayImage: image at: 0@0]

The program is now fully functional. Note that unlike our previous programs it automatically
repairs window damage due to collapsing, reshaping, and other window events.

Improvements

We know that it is better to centralize shared behavior and in our case both image

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 9/17/00

458

Introduction to Smalltalk - Chapter 12 - Developing user interfaces

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 9/17/00

461

the following example, we will create a UI component with an active user interface and show how to create
an active controller that responds to user input.

Example: Subview with clickable hot spots

Problem: Implement an application that displays a bordered subview (Figure 12.12) equipped with an

Introduction to Smalltalk - Chapter 12 - Developing user interfaces

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 9/17/00

463

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 9/17/00

465

Exercises

1. Reimplement our Example without lazy accessing and evaluate both approaches.
2.

Introduction to Smalltalk - Chapter 12 - Developing user interfaces
 Ivan Tomek 9/17/00

467

its components with the clipped GraphicsContext. Each component then redraws that part of itself which
falls within the clipping rectangle, using the supplied default graphics context parameters or redefining them
temporarily.

Older versions of VisualWorks used polling controllers which repeatedly queried the sensor for UI
events such as mouse movement or button clicks. Since polling requires extra overhead and since UI events
occur fast, this approach often missed UI events. Modern implementations still provide polling controllers
but add event-driven controllers which obtain event notification directly from the operating system,

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics
 Ivan Tomek 9/17/00

473

Figure 13.2. Simplified behavior of processes: Stopwatch runs until stopped by Delay. At this point
another process can start execution and the stopwatch resumes when the one second delay expires.

The Stop button stops the infinite iteration process started by the Start button by sending it the
terminate message:

stop
"Terminate the process implementing continuous stopwatch operation."

process terminate

stop

Start

one second one second one second

l o w e r p r i o r i t y p r o c e s s 2

e n d o f p r o c e s s

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics
 Ivan Tomek 9/17/00

477

the other vehicle’s traffic lights to red to prevent collision. Upon leaving the crossing, the vehicle changes

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics
 Ivan Tomek 9/17/00

478

After implementing a stopwatch, the obvious next candid

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics
 Ivan Tomek 9/17/00

479

2. Program opens form.
3. User enters information and clicks Accept.
4. Program closes form, inserts new alarm in the list, and displays the updated list in the main window.

Scenario 2: User edits an alarm in the list
1. User selects an alarm and clicks edit

3. UserAccept.
3. Program User eects an alarm and clicks .

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics
 Ivan Tomek

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics
 Ivan Tomek 9/17/00

481

Design Refinement

Class Hierarchy

AlarmTool is an application model, and its superclass is therefore ApplicationModel. Alarm does not
have any relatives in the class library and it will thus be a subclass of Object (Figure 13.6).

13.6. Hierarchy Diagram.

Specification Refinement

Alarm

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics
 Ivan Tomek 9/17/00

483

This should open alarm notifiers in the order 'number 2', 'number 1', and 'number 3' - and it does.

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics
 Ivan Tomek 9/17/00

486

The initialization process is standard; alarmList

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics
 Ivan Tomek 9/17/00

488

By the way, when you open your alarm tool, you may get strange values for starting hours and
minutes. To correct this, change you VisualWorks time zone. We leave this as an exercise.

The only remaining action methods are for the Close button in the main window, and for Accept

Introduction to Smalltalk 7.70yhapter 13.70Processes and their coordinaon t, addion tal UIo Spics
InÓIn Ivan Tomek I n 9 / 1 7 / 0 0 InTrain simulaon t.70specificaon t

InAfter this iroduction t, we are now readyo Smgive an example of the use of semaphores.InProblem:In Develop a simulaon t .of crossing truck and train tracks with the user iroerface ir Figure13.8. At

Inthe beginning of the simulaon t , the truck is at the top of i ts track and the train at the left end of i ts track.
InWhen the user clicksIn InGoIn, the train and the truck start moving at a constant0speed, changing direion towhen

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics
 Ivan Tomek 9/17/00

492

truck process will use the Truck class in a similar way. Process objects thus use domain objects but are
separate from them. With this background, we can now expand Scenario 1.

Scenario 1: Starting or restarting simulation
1. User clicks Go.
2. TrainSimulation creates a train process and a truck process.
3. TrainSimulation starts the train process and the vehicle processes automatically start taking turns

executing single step motion while respecting the semaphore at the crossing.

Scenario 2: Stopping simulation
1. User clicks Stop.
2. TrainSimulation terminates the two processes.

The immediate question is whether clicking Stop can actually freeze simulation. The point is that
 User clicks vehicl9.96 Tf
0.0428 Tc 0 Tw (S fr1 TD eingeabe s u.843er) Tj
19.32 P4.1ougF0 9.924oc 9/mov3t T TD r the
28.2 0 tartotion incrosxpl Tjr t -0.01tinsemap4n li.0ti2 -1),greenappli thcow24 12 354. Chang
BT
9peed T2545 88 .imu 1h. 74 /F49y fretigle s.024
18 TD eingeabe ss u.843er

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics
 Ivan Tomek 9/17/00

494

Figure 13.10. Class Hierarchy Diagram with classes to be designed shown as heavy rectangles.

Refined class descriptions

We now understand enough of the behaviors of our classes to be able to start refining class
descriptions:

Domain classes

Vehicle. Abstract superclass of domain classes Train and Truck. Factors out shared behavior and knowledge
such as vehicle position and direction of motion, calculation of the next position, testing for the end of the
track or crossing, and turning.
Superclass: Object
Components: limit (distance from crossing to lights), position (distance of vehicle from start of track),
direction (#incrementing or #decrementing position), vehicleLength (pixels), model (reference to the
TrainSimulation object running the sthe

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics
 Ivan Tomek 9/17/00

498

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics
 Ivan Tomek 9/17/00

499

"Return true if I have just reached the start of the crossing zone."
^(direction == #incrementing and: [position = (crossing - limit - vehicleLength)])

or: [direction == #decrementing and: [position = (crossing + limit)]]

and

endOfTrack
"Return true if this is the end of the track. Remember that vehicle might have turned."

^(direction = #decrementing and: [position = 0])
or: [direction == #incrementing and: [position = (trackLength - vehicleLength)]]

The method that triggers redisplay of semaphore lights uses the same principle as moveOneStep
and asks TrainSimulation to display semaphores controlled by the vehicle in the specified color:

semaphores: aColorValue
“Ask TrainSimulation to display sempahores controlled by vehicle identified by its symbol.”

model semaphores: aColorValue for: self symbol

As you can see, Vehicle implements most of the functionality of its concrete subclasses.

C Tj
36 -21.ue for: self sc90.849he ft6nlue -99e0.05t

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics
 Ivan Tomek 9/17/00

500

semaphore signal.
layout := LayoutView new.
layout model: self.
speed := 25 asValue. “Aspect variable associated with the speed slider.”
oKToClose := true

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics


Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics
 Ivan Tomek 9/17/00

502

[

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics
 Ivan Tomek 9/17/00

503

7. Add an animation of a crash of the two vehicles.
8. Extend the simulation program to several parallel train and truck tracks with a single shared crossing.

Each track has its own vehicle running at its own speed and each vehicle’s speed is controlled
independently. Speed is controlled by a single slider and a set of radio buttons, one for each vehicle.

9. Simulation of events occurring in parallel, such as our train simulation, are common. Define a

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics
 Ivan Tomek 9/17/00

504

5. User releases the mouse button.
6. Program stops dragging the track.

Scenario 3: User drags the left end of the horizontal track to a new position
1. User moves the cursor into the hot area surrounding the left end of the horizontal track.
2. Program changes cursor to the shape shown on the left of Figure 13.12.
3. User presses the <operate> button and moves the mouse while holding the button down.
4. Program drags the end of the track, restricting motion to horizontal displacement and following the

cursor without changing its shape. The program also moves the vehicle if necessary and enforces

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics
 Ivan Tomek 9/17/00

505

Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics


Introduction to Smalltalk - Chapter 13 - Processes and their coordination, additional UI topics
 Ivan Tomek 9/17/00

509

trackLength := model trainTrackLength - shift.

The Joy of Smalltalk - Glossary


The Joy of Smalltalk - Glossary

The Joy of Smalltalk - Glossary
 Ivan Tomek 9/18/00

515

File out. Command available in file browsing tools and used to store a method, a protocol, a class, or a
category in a file, using a special form expected by the file in command. Used for transporting source code
from one computer to another. The command is available in various Smalltalk browsers.
Finalization. Actions executed by the program when a window is being closed.
Floating point number.

The Joy of Smalltalk - Glossary
 Ivan Tomek 9/18/00

516

Message.
Metaclass.
Method.
Model.
Mouse buttons.
Multiple inheritance.
MVC paradigm.
Object.
Object file.
Optimization.
Order of evaluation.
Ordered collection.
Overloading.
Palette.
Pane.
Parameter.
Persostent object.
Pointer.
Pool dictionary.
Po-up menu.
Polymorphism.
Private method.
Primitive method.
Private method.
Protocol.
Pseudovariable.
Radio button.
Receiver.
Return object.
Reusability.
Selector.
self.
Semantics.
Set.
Shortcut key.
Signature.
Simulation.
Single inheritance.

ReSourceolld

S i g t a .

Sigta.ic binng.
S i g t r e a

PaSubass.
P a S u p e r a s s .
seluper Tj
T* 0.0082 Tc 0.04523Tw (Theempory.) riable.
S i T e x t T j
 T * 0 . 0 1 9 T c 0 . 0 1 1 T w (R e T e x t e d i r .) f w i d g .

The Joy of Smalltalk - Glossary
 Ivan Tomek 9/18/00

517

Text file.
Transcript.
UI.
User interface.
Unary message.
Undeclared variable.
Value holder.
Variable.
View.
Widget.
Wildcard.
Window.
Workspace.

Introduction to Smalltalk - References
 Ivan Tomek 9/18/00

References

Books

Kent Beck: Smalltalk: Best Practice Patterns, Prentice-Hall, 1997.
Timothy

Boolean value in a ValueHolder

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications


Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications


Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 04/06/2001

10

Exercises

1. Modify our example 1 to display ‘Input text’ in the input field and ‘Output text’

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 04/06/2001

14

(builder componentAt: #mozzarella) enable.
(componentAt: #figs) enable.
(builder componentAt: #pineapple) enable.
(builder componentAt: #mozzarellaPrice) enable.
(builder componentAt: #figsPrice) enable.
(builder componentAt: #pineapplePrice) enable]

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications


Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 04/06/2001

17

Figure A.1.14. Builder’s bindings dictionary.

Once the bindings

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications
 Ivan Tomek 04/06/2001

25

printAndClose

Introduction to Smalltalk - Appendix 1 - Check Boxes, Radio Buttons, Input Fields, and their applications


Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
 Ivan Tomek 04/06/2001

5

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
 Ivan Tomek 04/06/2001

6

•

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
 Ivan Tomek 04/06/2001

7

Figure A.2.6. The main canvas (left), and the two subcanvases. The subcanvas component of the main

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
 Ivan Tomek 04/06/2001

8

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus


Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
 Ivan Tomek 04/06/2001

10

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus


Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
 I

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus


Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
 Ivan Tomek 04/06/2001

21

dirString isEmpty | (dirName := dirString asFilename) isDirectory not
ifTrue: [^Dialog warn: dirName asString , ' is not a valid directory.']
ifFalse: [directoryString := dirString].

self builder window label:
('Files in directory: ' , directoryString copyWith: Filename separator).

divider selectionIndex: 1.
alphabet selectionIndex: 1

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus


Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
 Ivan Tomek 04/06/2001

27

Figure A.2.17. Passive (left) and activated (right) menu button. The passive view may display the current
choice in the menu. The menu bar at the top of the window has one label.

The distinguishing characteristics of popup menus, menu bars, and menu buttons are summarized
in the following table:

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
 Ivan Tomek 04/06/2001

30

Figure A.2.21. Dialog for installing a menu.

In our case, the automatically generated resource definition method is

testMenuHolder
"MenuEditor new openOnClass: self andSelector: #testMenuHolder"

<resource: #menu>

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
 Ivan Tomek 04/06/2001

Introduction to Smalltalk - Appendix 2 - Dataset, Subcanvas, Notebook, Dialog Window, Menus
 Ivan Tomek 04/06/2001

34

3. Use the Menu Editor to color the background of the delete

Appendix 3 – Chess board – a custom user interface
 Ivan Tomek 06/04/01

1

Appendix 3 – Chess board – a custom user interface

Overview

Appendix 3 – Chess board – a custom user interface
 Ivan Tomek 06/04/01

3

Context Diagram

The major components of the system are the chess board with its pieces and user interface, and the
players. The players (including a computer program player) are outside of the scope of the task. The
Context Diagram is shown in Figure A.3.2.

Appendix 3 – Chess board – a custom user interface
 Ivan Tomek

mailto:16@16

Appendix 3 – Chess board – a custom user interface
 Ivan Tomek 06/04/01

17

iii. How many moves are required for a knight to reach a given square from a given starting
square?

iv. What is the maximum number of moves for a knight to reach any position on the board from a
given starting square?

Introduction to Smalltalk - Appendix 4 - Classes, Metaclasses, and Metaprogramming
 Ivan Tomek 04/06/2001

3

A 4.2. What is the complete class hierarchy?

Introduction to Smalltalk - Appendix 4 - Classes, Metaclasses, and Metaprogramming
 Ivan Tomek 04/06/2001

4

Introduction to Smalltalk - Appendix 4 - Classes, Metaclasses, and Metaprogramming


Introduction to Smalltalk - Appendix 4 - Classes, Metaclasses, and Metaprogramming
 Ivan Tomek 04/06/2001

9

String subclasses “Returns #(ByteEncodedString TwoByteString Symbol GapString).”

To find which of all existing arrays has the largest size, evaluate

| size |
size := 0.
Array allInstancesDo: [:anArray| size := size max: anArray size].
size

or more simplyArray allInstances inject: 0 into: [:max :anArray| max max: anArray size]

To find all superclasses of a class, execute allSuperclasses as inSet allSuperclasses “OrderedCollection (Collection Object).”

Instance variable format contains a code that describes what kind of class this is. The protocol
based on format makes it possible to ask a class whether it has fixed size (classes that have only named
variables) or variable size (collections represented internally as indexed elements) and, in the case of a
variable size class, whether its variables are stored as eight-bit or 16-bit quantities. As an example, all
variable size classes can be obtained by

Object withAllSubclasses select: [:aClass| aClass isVariable]

which returns

OrderedCollection (AnnotatedMethod Array BinaryStorageBytes BOSSBytes BOSSReaderMap ByteArray

Introduction to Smalltalk - Appendix 4 - Classes, Metaclasses, and Metaprogramming
 Ivan Tomek 04/06/2001

10

Functionality based on access to class hierarchy and method dictionary

Behavior provides several methods for adding new selectors to the method dictionary or removing

Introduction to Smalltalk - Appendix 4 - Classes, Metaclasses, and Metaprogramming
 Ivan Tomek 04/06/2001

11

Exercises

1. The all-important

Introduction to Smalltalk - Appendix 4 - Classes, Metaclasses, and Metaprogramming
 Ivan Tomek 04/06/2001

Introduction to Smalltalk - Appendix 4 - Classes, Metaclasses, and Metaprogramming
 Ivan Tomek 04/06/2001

14

classVariableNames: ''
poolDictionaries: ''
category: 'Graphics-Support'

Accepting the edited template simply sends message subclass: instanceVariableNames:
classVariableNames: poolDictionaries: category:

Introduction to Smalltalk - Appendix 4 - Classes, Metaclasses, and Metaprogramming
 Ivan Tomek 04/06/2001

18

Exercises

Introduction to Smalltalk - Appendix 4 - Classes, Metaclasses, and Metaprogramming
 Ivan Tomek 04/06/2001

22

Proxy to insert a programmer action and pass the original message to x, the problem is solved (Figure A

Introduction to Smalltalk - Appendix 4 - Classes, Metaclasses, and Metaprogramming
 Ivan Tomek 04/06/2001

24

TestOfProxy newWithProxy var: 13; var: 15

Introduction to Smalltalk - Appendix 4 - Classes, Metaclasses, and Metaprogramming
 Ivan Tomek 04/06/2001

26

Important classes introduced in this chapter

Introduction to Smalltalk - Appendix 5 – Style Recommendations
 Ivan Tomek 04/06/2001

2

Guideline N.7: Argument names when type is repeated.

Introduction to Smalltalk - Appendix 5 – Style Recommendations
 Ivan Tomek 04/06/2001

3

A 5.4 Formatting

Guideline F.1: Use automatic formatting. Since the VisualWorks formatter exhibits some undesirable

Introduction to Smalltalk - Appendix 5 – Style Recommendations
 Ivan Tomek 04/06/2001

4

Introduction to Smalltalk - Appendix 5 – Style Recommendations


easy, others are difficult.

A.6.1 1. When delivering a VisualWorks product to a customer, you might want to make it very difficult
for the client to make sense out of your code - for competitive reasons. One strategy that has been suggested

Introduction to Smalltalk - Appendix 4 - Projects
 Ivan Tomek 04/06/2001

2

We want to be able to perform the following tasks:

• Patient record
• Add
• Delete
• Display
• Edit
• Print
• Create appointment
• Cancel appointment
•

Introduction to Smalltalk - Appendix 4 - Projects


Introduction to Smalltalk - Appendix 4 - Projects


Introduction to Smalltalk - Appendix 4 - Projects
 Ivan Tomek 04/06/2001

8

High level conversation:
1. User selects borrower in the catalog and clicks Open.
2. System opens a book form with current information about the book.
3. User edits the form and indicates end of task by clicking Accept in.

Introduction to Smalltalk - Appendix 4 - Projects


Introduction to Smalltalk - Appendix 7 - Smalltalk Syntax
 Ivan Tomek 04/06/2001Appendix 7 - Smalltalk SyntaxThis appendix presents the formal syntax of Smalltalk grammar - a collection of formal

prescriptions for forming valid Smalltalk expressions and reading Smalltalk code correctly. The rules have

Introduction to Smalltalk - Appendix 7 - Smalltalk Syntax
 Ivan Tomek 04/06/2001

2

<comment> ::= <commentDelimiter> <nonCommentDelimiter> <commentDelimiter>
<binaryCharacter> ::= ‘+’|’/’|’\’|’*’|’~’|’<‘|’>‘|’=‘|’@’|’%’|’|’|’&’|’?’|’!’|’,’

Introduction to Smalltalk -

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 04/06/2001

2

added to a stream and displayed in the text view, whereas non-normal characters are ‘dispatched’ for further
processing. This processing consists of checking ParagraphEditor’s dispatch table, an instance of
DispatchTable

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 04/06/2001

3

global interest), or class variables, or keys in a pool dictionary1. It turns out that they are keys in the pool
dictionary TextConstants because they are used by several other classes as well. When you inspect this
dictionary, you will find that Ctrlt ,Ctrlf, Cut, Paste, and BS are among many characters that are assigned

Introduction to Smalltalk - Appendix 8 - Tidbits


Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 04/06/2001

6

A ComposedText contains Text and has access to a dictionary of text styles via its TextAttributes
component (Figure A.8.2). The TextAttributes object does not itself contain the style dictionary but has
access to a

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 04/06/2001
7

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 04/06/2001

8

mailto:400@500
mailto:400@500

mailto:400@450

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 04/06/2001

10

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 04/06/2001

11

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 04/06/2001

12

(fontSize := Dialog choose: 'Which font size do you want?'

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 04/06/2001

13

that use it. When defining new text styles, a new instance of

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 04/06/2001

14

Introduction to Smalltalk - Appendix 8 - Tidbits
 Ivan Tomek 04/06/2001

17

Over: #over
Exit: #exit

	a1.pdf
	Example: Controlling the case of a string

	a2.pdf
	Overriding the Text Editor and Input Field default menu

	a3.pdf
	A.3.2 Preliminary Design

	a7.pdf
	Conclusion

	a8.pdf
	How it works
	How we can take advantage of it
	
	
	Main Lessons Learned

	Exercises
	A.8.2 Text and fonts

	Example 1: Define new font color attributes – a problem requiring a one-argument emphasis block
	Example 2: Defining font size emphasis – a problem requiring a two-argument character attribute block
	
	
	
	Example 7: Controlling font in a text editor widget
	Initialization
	Menu

	Closing notes

	FontPolicy

	A.8.3. Drag-and-Drop

	Example: Library Cataloguing Tool
	
	Design
	Implementation
	Main Lessons Learned

	Exercises
	A.8.4 The Virtual Machine

	Garbage collection in VisualWorks

	first.pdf
	The joy of Smalltalk
	An introduction to Smalltalk

