
Squeak Smalltalk: Classes Reference

Version 0.0, 20 November 1999, by Andrew C. Greenberg, werdna@mucow.com
Version 1.2, 26 April 2001, by Andrew P. Black, black@cse.ogi.edu

Based on:
ÊÊÊ Smalltalk-80: The Language and Its Implementation, Author: Adele Goldberg and David Robson
ÊÊÊ Squeak Source Code, and the readers of the Squeak mailing list.

Squeak site: http://www.squeak.org

Contents

Fundamental Classes and Methods
Numeric Classes and Methods
Collection Classes and Methods
Streaming Classes and Methods
ANSI-Compatible Exceptions
The Squeak Class Hierarchy
Other Categories of Squeak Classes

See also the Squeak Language Reference page

Fundamental Classes and Methods

Class Object
Class Boolean
Class Magnitude
Class Character

Class Object (Operations on all objects)

Instance Creation (Class Side)Ê

Message Description Notes

new
Answer a new instance of the receiver (which is a class). This is the usual way of
creating a new object. is often overridden in subclasses to provide class-specific
behavior.

new 1, 2

basicNew This is the primitive that is ultimately called to implement .new 3

anInteger
new: Answer an instance of the receiver (which is a class) with size given by anInteger.

Only allowed if it makes sense to specify a size.
4

Notes:

1. The usual body for a method is . Remember to put it on the class side, remember to type the ,
and remember to say , not !

new ^ super new initialize ^
super self

2. Do implement new if it makes no sense, For example, look at Boolean class>>new and MappedCollection class>>new. not
3. is there so you can still make instances even if a superclass has overridden . Consequently, never

override , until you become a wizard.
basicNew new

basicNew
4. If you need an initialization parameter other than a size, choose a more meaningful name than For example, look at the

instance creation protocol for Pen class and Rectangle class.
new:

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 1 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Comparing Objects

Message Description Notes

anObject== Are the receiver and the argument the same object? (Answer is or)true false 1

anObject
~~ Are the receiver and the argument different objects? 1

anObject= Are the receiver and the argument equal? The exact meaning of equality depends on the
class of the receiver.

2

anObject
~= Are the receiver and the argument unequal? 2

hash Answer a SmallInteger whose value is related to the receiver's value. 2

Notes:

1. and should not normally be redefined in any other class.== ~~
2. Since various classes (particularly Sets and Dictionaries) rely on the property that equal objects have equal hashes, you should

override whenever you override =. It must be true that implies . The contrapositive and the
converse will not generally hold.

hash (a = b) (a hash = b hash)

Testing Objects

Message Description Notes

isNil Is the receiver nil? (Answer is or)true false 1

notNil Is the receiver not nil? 1

 aBlockifNil:
Evaluate aBlock if the receiver is nil, and answer the value of aBlock. Otherwise
answers the receiver.

2

aBlockifNotNil:
Evaluate aBlock if the receiver is not nil, and answer the value of aBlock.
Otherwise answers the receiver, , nili.e.

2

aBlock
ifNotNilDo: If the receiver is not nil, evaluate aBlock with the receiver as argument. Answers

the receiver.
3

Notes:

1. is preferred to , and similarly for .anObject isNil anObject == nil anObject ~~ nil
2. is preferred to .anobject ifNil: [...] anObject isNil ifTrue: [...]
3. is useful if the receiver is a complex expression, for exampleifNotNilDo: aBlock

self leftChild rightChild ifNotNilDo: [:node | node balance]

Copying Objects

Message Description Notes

copy
Answer another instance just like the receiver. Subclasses typically override this
method; they typically do not override shallowCopy.

Ê

shallowCopy Answer a copy of the receiver which shares the receiver's instance variables. Ê

deepCopy Answer a copy of the receiver with its own copy of each instance variable. Ê

veryDeepCopy
Do a complete tree copy using a dictionary. An object in the tree twice is copied
once and shared by both referents.

Ê

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 2 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Sending Messages to Objects

Message Description Notes

aSymbolperform:
Send the unary selector, aSymbol, to the receiver. Signal an error if the
number of arguments expected by the selector is not zero.

aSymbol
anObject
perform: with:

Send the selector aSymbol to the receiver with anObject as its
argument. Fail if the number of arguments expected by the selector is
not one.

1

selector
argArray

perform:
withArguments:

Send the selector, aSymbol, to the receiver with arguments in argArray.
Fail if the number of arguments expected by the selector does not match
the size of argArray.

Note:

1. Squeak objects also recognize and#perform:with:with: #perform:with:with:with

Indexing Objects

Message Description Notes

 indexat:
Answer the value of the index'th element of the receiver. Signal an Error if index
is not an Integer or is out of bounds.

Ê

 index
anObject
at: put: Store anObject in the receiver at the element index. Signal an Error if index is not

an Integer or is out of bounds. Answer anObject.
Ê

index
aBlock
at: modify: Replace the element at index of the receiver with that element transformed by

the block.
Ê

size
Answer the number of indexable elements in the receiver. This value is the same
as the largest legal subscript.

Ê

Displaying and Storing Objects

Message Description Notes

printString Answer a String whose characters describe the receiver. Ê

aStreamprintOn: Append to aStream a String whose characters describe the receiver. Ê

storeString Answer a String from which the receiver can be reconstructed. Ê

aStreamstoreOn: Append to aStream a String from which the receiver can be reconstructed Ê

Interrogating Objects

Message Description Notes

class Answers the receiver's class (an object). Ê

 aClassisKindOf: Is the receiver an instance of aClass or one of its subclasses? Ê

 aClassisMemberOf: Is the receiver an instance of aClass? (Same as)rcvr class == aClass Ê

 aSelectorrespondsTo:
Can the receiver find a method for aSelector, either in the receiver's class or
in one of its superclasses?

Ê

aSelector
canUnderstand: Does the receiver, which must be a class, have a method for aSelector? The

method can belong to the receiver or to any of its superclasses.

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 3 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Miscellaneous Messages on Objects

Message Description Notes

yourself Answers self. 1

asString Answers the receiver's printString.

aSymboldoesNotUnderstand: Report that the receiver does not understand aSymbol as a message. Ê

 aStringerror: Signal an Error. Ê

halt Stops execution. 2

Notes:

1. the message is mostly used as the last message in a cascade, when the previous message answered some object other
than the receiver. For example,

ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊanswers , the object that was put, whereas
; ÊÊÊÊanswers , the receiver.

yourself

#(1 2 3 5) at: 4 put: 4 4
#(1 2 3 5) at: 4 put: 4 yourself #(1 2 3 4)

2. is the usual way of forcing entry to the debugger. The halt can be resumed.self halt

Class Boolean

This abstract class represents logical values, providing Boolean operations and conditional control structures. It has two subclasses,
True and False, each of which have singleton instances represented by the Squeak keywords and , respectively.true false

Evaluating and Non-Evaluating Logical Operations for Boolean

Message Description Notes

 aBoolean&
Evaluating conjunction (AND). Evaluate the argument. Then answer true if
both the receiver and the argument are true.

Ê

 aBoolean|
Evaluating disjunction (OR). Evaluate the argument. Then answer true if either
the receiver or the argument is true.

 aBooleaneqv: Answer true if the receiver is equivalent to aBoolean. Ê

not Negation. Answer true if the receiver is false, answer false if the receiver is true. Ê

 aBooleanxor: Exclusive OR. Answer true if the receiver is not equivalent to aBoolean. Ê

alternativeBlock
and: Nonevaluating conjunction. If the receiver is true, answer the of

alternativeBlock; otherwise answer false without evaluating alternativeBlock.
value

Ê

 alternativeBlockor:
Nonevaluating disjunction. If the receiver is false, answer the of
alternativeBlock; otherwise answer true without evaluating alternativeBlock.

value
Ê

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 4 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Class Magnitude

This abstract class embraces, among other classes, Numbers, Characters, Date and Time. It addresses classes whose instances can be
linearly ordered.

Message Description Notes

< aMagnitude Answer whether the receiver is strictly less than the argument. Ê

> aMagnitude Answer whether the receiver is strictly greater than the argument. Ê

<= aMagnitude Answer whether the receiver is less than or equal to the argument. Ê

>= aMagnitude Answer whether the receiver is greater than or equal to the argument. Ê

 min maxbetween: and:
Answer whether the receiver is greater than or equal to the argument,
min, and less than or equal to the argument, max.

Ê

 aMagnitudemin: Answer the receiver or the argument, whichever is the lesser magnitude. Ê

 aMagnitudemax: Answer the receiver or the argument, whichever is the greater magnitude. Ê

firstMagnitude
secondMagnitude
min: max:

Take the receiver or the argument, firstMagnitude, whichever is the
lesser magnitude, and answer that or the argument, secondMagnitude,
whichever is the greater magnitude.

Ê

Class Character

Squeak has its own set of 256 characters, which may differ from that of the host platform. Instances of class Character store an 8-bit
character code.

The characters 0-127 are the same as the corresponding ASCII characters, with a few exceptions: the assignment arrow replaces
underscore, and characters for the enter, insert, page up, page down, home, and the 4 arrow keys replace some of the ACSII
control characters. These characters can be accessed from Squeak using methods in class Character.
The characters 128-255 are sparsely populated. Various symbols, such as bullets, trademark, copyright, cent, Euro and Yen,
diphthongs and a fair number of accented characters as well as non-breaking space (Character nbsp) are available at the same
codes as in the Macintosh character set, but fewer characters are assigned than on the Macintosh.
The full character set can be viewed by doing a printIt on .Character allCharacters

Methods for instance creation (Class side)

Most of the time, characters literals , , are used in preference to class methods. The principal exceptions are the non-printing
characters listed here. Programs should never need to depend on the details of the character encoding.

$a $b etc.

Message Description Notes

 nvalue:
n must be an integer in the range 0 to 255.
Answer the Character with code n

Ê1

xdigitValue:
Answer the Character whose digit value is
x. For example, answer $9 for x=9, $0 for
x=0, $A for x=10, $Z for x=35.

Ê

arrowDown arrowLeft arrowRight arrowUp
backspace cr delete end enter escape euro home
insert lf linefeed nbsp newPage pageDown pageUp
space tab

Answer the appropriate character

Note:

1. The invariant holds for all in the range [0..255].(Character value: n) asciiValue = n n

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 5 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Methods for accessing Characters

Message Description Notes

asciiValue
Answer the value used in the receiver's encoding. This is not really ASCII, despite the
name!

Ê1

digitValue
Answer 0-9 if the receiver is $0-$9, 10-35 if it is $A-$Z, and < 0 otherwise. This is used
to parse literal numbers of radix 2-36.

Ê

Note:

1. Character has the unique instance property, so that all equal ("=") instances of a character are identical ("=="). That is,
 if and only if .

a
asciiValue == b asciiValue a == b

Methods for testing Characters

Message Description Notes

isAlphaNumeric Answer whether the receiver is a letter or a digit. Ê

isDigit Answer whether the receiver is a digit. Ê

isLetter Answer whether the receiver is a letter. Ê

isLowercase Answer whether the receiver is a lowercase letter. Ê

isSeparator
Answer whether the receiver is one of the separator characters: space, cr, tab, line
feed, or form feed.

Ê

isSpecial Answer whether the receiver is one of the special characters Ê

isUppercase Answer whether the receiver is an uppercase letter. Ê

isVowel Answer whether the receiver is one of the vowels, AEIOU, in upper or lower case. Ê

tokenish Answer whether the receiver is a valid token-characterÑletter, digit, or colon. Ê

Methods for converting Characters

Message Description Notes

asLowercase If the receiver is uppercase, answer its matching lowercase Character. Ê

asUppercase If the receiver is lowercase, answer its matching uppercase Character. Ê

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 6 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Numeric Classes and Methods

Class Number

This abstract class embraces Integers, Floats and Fractions. Number is a subclass of Magnitude.

Methods for arithmetic on all Numeric Classes

Message Description Notes

+ aNumber Answer the sum of the receiver and aNumber. Ê

- aNumber Answer the difference of the receiver and aNumber. Ê

* aNumber Answer the product of the receiver and aNumber. Ê

/ aNumber
Answer the result of dividing the receiver by aNumber, retaining as much precision as
possible. If the result is not exact, the answer will be a Fraction or Float, as
appropriate. Signal ZeroDivide if aNumber is Zero.

Ê

// aNumber
Answer the result of dividing the receiver by aNumber, truncating toward negative
infinity. Signal ZeroDivide if aNumber is Zero.

Ê

\\ aNumber
Answer the remainder left when dividing the receiver by aNumber, truncating toward
negative infinity. This is the modulus operator. Signal ZeroDivide if aNumber is Zero.

Ê

aNumberquo:
Answer the result of dividing the receiver by aNumber, truncating toward zero. Signal
ZeroDivide if aNumber is Zero.

Ê

aNumber
rem: Answer the remainder left when dividing the receiver by aNumber, truncating toward

zero. Signal ZeroDivide if aNumber is Zero.
Ê

abs Answer the absolute value of the receiver. Ê

negated Answer the negation of the receiver. Ê

reciprocal Answer 1 divided by the receiver. Signal ZeroDivide if the receiver is zero. Ê

Methods implementing mathematical functions for Numbers

Message Description Notes

exp Answer a floating point number that is the exponential of the receiver Ê

ln Answer the natural log of the receiver. Ê

 aNumberlog: Answer the logarithm base aNumber of the receiver. Ê

 aNumberfloorLog:
Take the logarithm base aNumber of the receiver, and answer the integer
nearest that value towards negative infinity.

Ê

 aNumberraisedTo: Answer the receiver raised to the power of aNumber. Ê

anInteger
raisedToInteger: Answer the receiver raised to the power of anInteger. Signal an Error if

anInteger is not an integer!
Ê

sqrt
Answer a floating point number that is the positive square root of the
receiver.

Ê

squared Answer the receiver multiplied by itself. Ê

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 7 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Methods for testing Numbers

Message Description Notes

even Answer whether the receiver is even. Ê

odd Answer whether the receiver is odd. Ê

negative Answer whether the receiver is less than zero. Ê

positive Answer whether the receiver is greater than or equal to zero. Ê

strictlyPositive Answer whether the receiver is greater than zero. Ê

sign
Answer 1 if the receiver is strictly positive, zero if the receiver is zero, and -1 if the
receiver is strictly negative.

Ê

isZero Answer whether the receiver is zero. Ê

Methods for truncating and rounding Numbers

Message Description Notes

ceiling Answer the Integer nearest the receiver toward positive infinity. Ê

floor Answer the Integer nearest the receiver toward negative infinity. Ê

truncated Answer an integer nearest the receiver toward zero. Ê

aNumbertruncateTo: Answer the multiple of aNumber that is nearest the receiver toward zero. Ê

rounded Answer the integer nearest the receiver. Ê

 quantumroundTo: Answer the nearest number to the receiver that is a multiple of quantum. Ê

quantumroundUpTo: Answer the multiple of quantum that is nearest the receiver toward infinity Ê

Methods for trigonometry on Numbers

Message Description Notes

sin Answer the sine of the receiver taken as an angle in radians. Ê

cos Answer the cosine of the receiver taken as an angle in radians. Ê

tan Answer the tangent of the receiver taken as an angle in radians. Ê

degreeSin Answer the sin of the receiver taken as an angle in degrees. Ê

degreeCos Answer the cosine of the receiver taken as an angle in degrees. Ê

arcSin Answer an angle in radians whose sine is the receiver. Ê

arcCos Answer an angle in radians whose cosine is the receiver. Ê

arcTan Answer an angle in radians whose tangent is the receiver. Ê

denominatorarcTan: Answer the angle in radians whose tan is the receiver divided by denominator. Ê

degreesToRadians Answer the receiver in radians. Assumes the receiver is in degrees. Ê

radiansToDegrees Answer the receiver in degrees. Assumes the receiver is in radians. Ê

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 8 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Class Integer

Methods for arithmetic on Integers

Message Description Notes

isPowerOfTwo Answer whether the receiver is a power of two. Ê

factorial Answer the factorial of the receiver. Ê

 anIntegergcd: Answer the greatest common denominator of the receiver and the argument. Ê

 anIntegerlcm: Answer the least common multiple of the receiver and the argument. Ê

 rtake: Answer the number of combinations of the receiver, taken r at a time. Ê

Methods for bit manipulation on Integers

A range of bit manipulation operations are available on Integers. They are rarely needed, however, so they are not described here. Of
course, they can be viewed using the browser.

Collection Classes and Methods

The Collection Hierarchy

Class Description

Collection Abstract Class for Collections

ÊÊÊÊBag Unordered, unindexed collection of objects

ÊÊÊÊSet Unordered, unindexed collection of unique objects

ÊÊÊÊÊÊÊÊDictionary Set of associations (values are indexable by keys)

ÊÊÊÊÊÊÊÊÊÊÊÊIdentityDictionary Dictionary, but comparisons are done using ==

ÊÊÊÊÊÊÊÊIdentitySet Set, but comparisons are done using ==

ÊÊÊÊSequenceableCollection Ordered collection, indexed by integers

ÊÊÊÊÊÊÊÊOrderedCollection Ordered according to manner elements are added and removed

ÊÊÊÊÊÊÊÊÊÊÊÊSortedCollection Ordered according to value of a "sortBlock"

ÊÊÊÊÊÊÊÊLinkedList Homogeneous SequenceableCollection of Links

ÊÊÊÊÊÊÊÊInterval Homogeneous sequence of arithmetic progression of Integers

ÊÊÊÊÊÊÊÊArrayedCollection Ordered collection, indexed by fixed range of Integers

ÊÊÊÊÊÊÊÊÊÊÊÊArray ArrayedCollection of arbitrary Objects

ÊÊÊÊÊÊÊÊÊÊÊÊArray2D Homogeneous ArrayedCollection of Arrays

ÊÊÊÊÊÊÊÊÊÊÊÊByteArray Homogeneous ArrayedCollection of Bytes (Integers -128..255)

ÊÊÊÊÊÊÊÊÊÊÊÊFloatArray Homogeneous ArrayedCollection of Floating point numbers

ÊÊÊÊÊÊÊÊÊÊÊÊIntegerArray Homogeneous ArrayedCollection of Signed 32-bit Integers

ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊPointArray Homogeneous ArrayedCollection of Points (with 32-bit values)

ÊÊÊÊÊÊÊÊÊÊÊÊRunArray Homogeneous ArrayedCollection of Integers (sparse RLE representation)

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 9 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

ÊÊÊÊÊÊÊÊÊÊÊÊShortIntegerArray Homogeneous ArrayedCollection of Signed 16-bit Integers

ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊShortPointArray Homogeneous ArrayedCollection of Points (with 16-bit values)

ÊÊÊÊÊÊÊÊÊÊÊÊShortRunArray Homogeneous ArrayedCollection of Signed 16-bit Ints (sparse RLE rep)

ÊÊÊÊÊÊÊÊÊÊÊÊString Homogeneous ArrayedCollection of Characters

ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊSymbol Homogeneous ArrayedCollection of Characters (with unique instance property)

ÊÊÊÊÊÊÊÊÊÊÊÊText Homogeneous ArrayedCollection of Characters with associated text attributes

ÊÊÊÊÊÊÊÊÊÊÊÊWordArray Homogeneous ArrayedCollection of Unsigned 32-bit Integers

ÊÊÊÊÊÊÊÊHeap Like SortedCollection, but stores information as a heap. (see Heapsort)

ÊÊÊÊÊÊÊÊMappedCollection

Means for accessing an indexable Collection, using a mapping from a collection of
"external" keys to the accessed collection's "indexing" keys. The
MappedCollection can then be used directly, indexing and changing the accessed
collection via the external keys.

Class Collection

Methods for creating Collections (Class Side)

Message Description Notes

 anObjectwith: Answer an instance of the receiver containing anObject Ê

firstObject
secondObject
with: with:

Answer an instance of the receiver containing all the arguments as
elements. (Squeak recognizes instantiators of this type up to six "with:"
clauses).

Ê

aCollectionwithAll:
Answer an instance of the receiver containing all the elements from
aCollection.

Ê

Methods for testing Collections

Message Description Notes

isEmpty Answer whether the receiver contains any elements. Ê

 anObjectoccurrencesOf: Answer how many of the receiver's elements are equal to anObject. Ê

 aBlockanySatisfy:
Evaluate aBlock with the elements of the receiver. If aBlock returns true
for any element return true. Otherwise return false

Ê

 aBlockallSatisfy:
Evaluate aBlock with the elements of the receiver. If aBlock returns true
for all elements return true. Otherwise return false

 anObjectincludes: Answer whether anObject is one of the receiver's elements. Ê

 aCollectionincludesAllOf: Answer whether all the elements of aCollection are in the receiver. Ê

aCollection
includesAnyOf: Answer whether any element of aCollection is one of the receiver's

elements.
Ê

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 10 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Methods for adding and removing Collection elements

Message Description Notes

anyOne
Answer a specimen element of the receiver (any one at all).
Signal an error if the receiver is empty.

 newObjectadd:
Include newObject as one of the receiver's elements. Answer
newObject. ArrayedCollections cannot respond to this message.

Ê

 newObjectaddAll:
Include all the elements of aCollection as the receiver's elements.
Answer aCollection.

Ê

 oldObjectremove:
Remove oldObject as one of the receiver's elements. Answer
oldObject unless no element is equal to oldObject, in which case,
signal an Error.

Ê

 oldObject
anExceptionBlock
remove: ifAbsent:

Remove oldObject as one of the receiver's elements. If several of
the elements are equal to oldObject, only one is removed. If no
element is equal to oldObject, answer the result of evaluating
anExceptionBlock. Otherwise, answer oldObject.

Ê

 aCollectionremoveAll:
Remove each element of aCollection from the receiver. If
successful for each, answer aCollection. Otherwise signal an
Error.

Ê

aCollectionremoveAllFoundIn:
Remove from the receiver each element of aCollection that is
present in the receiver.

Ê

 aBlockremoveAllSuchThat:
Evaluate aBlock with each element as argument, and remove that
element if the answer is true.

Ê

 secondCollectiondifference:
Answer a new collection that is computed by copying the
receiver and removing all the elements found in secondCollection.

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 11 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Methods for enumerating Collections

Message Description Notes

 aBlockdo:
Evaluate aBlock with each of the receiver's elements as the
argument.

Ê

 aBlock
separatorBlock
do: separatedBy:

Evaluate aBlock for all elements in the receiver, and if there is
more than one element, evaluate the separatorBlock between
each pair of elements in the receiver.

Ê

 aPredicateBlockselect:

Evaluate aPredicateBlock with each of the receiver's elements
as the argument. Collect into a new collection like the receiver,
only those elements for which aPredicateBlock evaluates to
true. Answer the new collection.

Ê

 aPredicateBlockreject:

Evaluate aPredicateBlock with each of the receiver's elements
as the argument. Collect into a new collection like the receiver
only those elements for which aPredicateBlock evaluates to
false. Answer the new collection.

Ê

 aMappingBlockcollect:
Evaluate aMappingBlock with each of the receiver's elements
as the argument. Collect the resulting values into a collection
like the receiver. Answer the new collection.

Ê

 aPredicateBlockdetect:

Evaluate aPredicateBlock with each of the receiver's elements
as the argument. Answer the first element for which
aPredicateBlock answers true. Signal an Error if none are
found.

Ê

 aPredicateBlock
exceptionBlock
detect: ifNone:

Evaluate aPredicateBlock with each of the receiver's elements
as the argument. Answer the first element for which
aPredicateBlock evaluates to true. If there is none, answer the
result of evaluating exceptionBlock.

Ê

 initialValue binaryBlockinject: into:

Accumulate a running value associated with evaluating
binaryBlock. The running value is initialized to initialValue.
The current running value and the next element of the receiver
are provided as the arguments to binaryBlock. For example,
to compute the sum of the elements of a numeric collection,
aCollection 0 [:subTotal :next | subTotal + next].inject: into:

Ê

aMappingBlock
aPredicateBlock
collect: thenSelect:

Evaluate aMappingBlock with each of the receiver's elements
as the argument. Collect the resulting values that satisfy
aPredicateBlock into a collection like the receiver. Answer the
new collection.

Ê

 aPredicateBlock
aMappingBlock
select: thenCollect:

Evaluate aMappingBlock with each of the receiver's elements
for which aPredicateBlock answers true as the argument.
Collect the resulting values into a collection like the receiver.
Answer the new collection.

Ê

 aPredicateBlockcount:
Evaluate aPredicateBlock with each of the receiver's elements
as the argument. Return the number that answered true.

Ê

Bag

Methods for accessing Bags

Message Description Notes

newObject
anInteger

add:
withOccurrences:

Add the element newObject to the receiver. Do so as though the
element were added anInteger number of times. Answer newObject.

Ê

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 12 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Dictionary and IdentityDictionary

Methods for Accessing Dictionaries

Dictionaries are homogenous Sets of key and value pairs. These pairs are called Associations: key and value can be any object.
Instances of Association are created by sending the binary message " " (is defined in Object). Dictionaries have the
property that each key occurs at most once. IdentityDictionaries have the same property, but determine uniqueness of keys using ==
instead of =. In ordinary use, both kinds of Dictionary are indexed using the unique key to obtain the corresponding value.

key -> value ->

Message Description Notes

 aKeyat:
Answer the value associated with aKey. Signal an Error if no
value is associated with aKey.

Ê

 aKey aBlockat: ifAbsent:
Answer the value associated with aKey. If no value is
associated with aKey, answer the value of aBlock.

Ê

 aKeyassociationAt:
Answer the association whose key is aKey. If there is none,
signal an Error

Ê

 aKey aBlockassociationAt: ifAbsent:
Answer the association whose key is aKey. If there is none,
answer the value of aBlock.

Ê

 aValuekeyAtValue:
Answer the key of the first association having aValue as its
value. If there is none, signal an Error.

Ê

 aValue
exceptionBlock
keyAtValue: ifAbsent:

Answer the key of the first association having aValue as its
value. If there is none, answer the result of evaluating
exceptionBlock.

Ê

keys Answer a Set containing the receiver's keys. Ê

values Answer an Array containing the receiver's values. Ê

 aValueincludes: Does the receiver contain a value equal to aValue? Ê

 aKey>includesKey: Does the receiver have a key equal to aKey? Ê

 aBlockdo:
Evaluate aBlock with each of the receiver's values as
argument.

Ê

 aBlockkeysDo: Evaluate aBlock with each of the receiver's keys as argument. Ê

 aBlockvaluesDo: same as do: Ê

aBinaryBlockkeysAndValuesDo:
Evaluate aBinaryBlock with each of the receiver's keys and
the associated value as the arguments.two

Ê

 aBlockassociationsDo:
Evaluate aBlock with each of the receiver's elements (key/
value associations) as the argument.

Ê

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 13 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Sequenceable Collection

Methods for accessing SequenceableCollections

Message Description Notes

 indexCollectionatAll:
Answer a collection containing the elements of the
receiver specified by the integer elements of the
argument, indexCollection.

Ê

 aCollection anObjectatAll: put:
Put anObject at every index specified by the integer
elements of the argument, aCollection.

Ê

 anObjectatAllPut: Put anObject at every one of the receiver's indices. Ê

first
Answer the first element of the receiver. (Squeak also
recognizes second, third, fourth, fifth and sixth). Signal
an error if there aren't sufficient elements in the receiver.

Ê

middle
Answer the median element of the receiver. Signal an
error if the receiver is empty.

Ê

last
Answer the last element of the receiver. Signal an error if
the receiver is empty.

Ê

allButFirst
Answer a collection equal to the receiver, but without the
first element. Signal an error if the receiver is empty.

Ê

allButLast
Answer a collection equal to the receiver, but without the
last element. Signal an error if the receiver is empty.

Ê

 anElementindexOf:
Answer the index of anElement within the receiver. If the
receiver does not contain anElement, answer 0.

Ê

 anElement
exceptionBlock
indexOf: ifAbsent:

Answer the index of anElement within the receiver. If the
receiver does not contain anElement, answer the result of
evaluating the argument, exceptionBlock.

Ê

aSubCollection
 anIndex

indexOfSubCollection:
startingAt:

Answer the index of the receiver's first element, such
that that element equals the first element of
aSubCollection, and the next elements equal the rest of
the elements of aSubCollection. Begin the search at
element anIndex of the receiver. If no such match is
found, answer 0.

Ê

aSubCollection
anIndex

exceptionBlock

indexOfSubCollection:
startingAt: ifAbsent:

Answer the index of the receiver's first element, such
that that element equals the first element of sub, and the
next elements equal the rest of the elements of sub. Begin
the search at element start of the receiver. If no such
match is found, answer the result of evaluating argument,
exceptionBlock.

Ê

 start stop
replacementCollection
replaceFrom: to: with:

This destructively replaces elements from start to stop in
the receiver. Answer the receiver
itself. Use for insertion/
deletion that may alter the size of the result.

copyReplaceFrom:to:with:
Ê

 start
replacementCollection repStart
replaceFrom: to: stop: with:

startingAt:

This destructively replaces elements from start to stop in
the receiver starting at index, repStart, in the
sequenceable collection, replacementCollection. Answer
the receiver. No range checks are performed.

Ê

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 14 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Methods for copying SequenceableCollections

Message Description Notes

, otherCollection
Answer a new collection comprising the receiver concatenated
with the argument, otherCollection.

Ê

 start stopcopyFrom: to:
Answer a copy of a subset of the receiver that contains all the
elements between index start and index stop, inclusive of both.

Ê

oldSubCollection
newSubCollection

copyReplaceAll:
with:

Answer a copy of the receiver in which all occurrences of
oldSubstring have been replaced by newSubstring.

Ê

 start stop
replacementCollection

copyReplaceFrom: to:
with:

Answer a copy of the receiver satisfying the following
conditions: If stop is less than start, then this is an insertion;
stop should be exactly start-1. start = 1 means insert before
the first character, start = size+1 means append after last
character. Otherwise, this is a replacement; start and stop
have to be within the receiver's bounds.

Ê

 newElementcopyWith:
Answer a copy of the receiver that is 1 bigger than the
receiver and has newElement at the last element.

Ê

 oldElementcopyWithout:
Answer a copy of the receiver from which all occurrences of
oldElement have been left out.

Ê

 aCollectioncopyWithoutAll:
Answer a copy of the receiver from which all occurrences of
all elements in aCollection have been removed.

Ê

 length
anElement
forceTo: paddingWith: Answer a copy of the receiver with the specified length. If

necessary, pad with anElement
Ê

reversed
Answer a copy of the receiver in which the sequencing of all
the elements has been reversed.

Ê

shuffled
Answer a copy of the receiver in which the elements have
been permuted randomly.

Ê

 aBinaryBlocksortBy:
Answer a copy that is sorted. Sort criteria is aBinaryBlock.
When the block is true, the first arg goes first (so [:a :b | a > b]
sorts in descending order).

Ê

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 15 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Methods for enumerating SequenceableCollections

Message Description Notes

 aBlockfindFirst:
Return the index of the receiver's first element for which aBlock
evaluates as true.

Ê

 aBlockfindLast:
Return the index of the receiver's last element for which aBlock
evaluates as true.

Ê

aBinaryBlockkeysAndValuesDo:
Evaluate aBinaryBlock once with each valid index for the
receiver in order, along with the corresponding value in the
receiver for that index.

Ê

 aBlockreverseDo:

Evaluate aBlock with each of the receiver's elements as the
argument, starting with the last element and taking each in
sequence up to the first. For SequenceableCollections, this is
the reverse of the enumeration for #do:.

Ê

 otherCollection
binaryBlock
with: do: Evaluate binaryBlock with corresponding elements from this

collection and otherCollection.
Ê

 otherCollection
aBinaryBlock
reverseWith: do:

Evaluate aBinaryBlock with each of the receiver's elements, in
reverse order, along with the corresponding element, also in
reverse order, from otherCollection.

Ê

OrderedCollections

Methods for accessing OrderedCollections

Message Description Notes

 newObject
oldObject
add: before: Add the argument, newObject, as an element of the receiver. Put it

in the sequence just preceding oldObject. Answer newObject.
Ê

 newObject oldObjectadd: after:
Add the argument, newObject, as an element of the receiver. Put it
in the sequence just succeeding oldObject. Answer newObject.

Ê

 newObject
index
add: afterIndex: Add the argument, newObject, as an element of the receiver. Put it

in the sequence just after index. Answer newObject.
Ê

 anElementaddFirst:
Add newObject to the beginning of the receiver. Answer
newObject.

Ê

anOrderedCollection
addAllFirst: Add each element of anOrderedCollection at the beginning of the

receiver. Answer anOrderedCollection.
Ê

 anElementaddLast: Add newObject to the end of the receiver. Answer newObject. Ê

 anOrderedCollectionaddAllLast:
Add each element of anOrderedCollection at the end of the
receiver. Answer anOrderedCollection.

Ê

 anIndexremoveAt:
remove the element of the receiver at location anIndex. Answers
the element removed.

Ê

removeFirst
Remove the first element of the receiver and answer it. If the
receiver is empty, signal an Error.

Ê

removeLast
Remove the last element of the receiver and answer it. If the
receiver is empty, signal an Error.

Ê

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 16 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Strings

String is an extensive class, built over the ages in something of an manner. We describe here only a small fraction of the
methods provided (there are about 300!)

ad hoc

Methods for accessing Strings

Message Description Notes

 delimiters
 start

findAnySubStr:
startingAt:

Answer the index of the character within the receiver, starting
at start, that begins a substring matching one of the delimiters;
delimiters is an Array of Strings and/or Characters. If the
receiver does not contain any of the delimiters, answer size +
1.

Ê

delimitersfindBetweenSubStrs:
Answer the collection of tokens that results from parsing the
receiver. And of the Strings (or Characters) in the Array
delimiters is recognized as separating tokens.

Ê

 delimiters
start

findDelimiters:
startingAt:

Answer the index of the character within the receiver, starting
at start, that matches one of the delimiters. If the receiver does
not contain any of the delimiters, answer size + 1.

Ê

 subStringfindString:
Answer the first index of subString within the receiver. If the
receiver does not contain subString, answer 0.

Ê

subString
start
findString: startingAt: Answer the index of subString within the receiver, starting at

start. If the receiver does not contain subString, answer 0.
Ê

 delimitersfindTokens:

Answer the collection of tokens that results from parsing the
receiver. Any character in the argument, delimiters, marks a
border. Several delimiters in a row are considered as just one
separator

Ê

 aCharacterindexOf:
Answer the index of the first occurrence of aCharacter in the
receiver. 0 Otherwise.

Ê

aCharacter
start
indexOf: startingAt: Answer the index of the first occurrence of aCharacter in the

receiver, beginning at index start. 0 Otherwise.
Ê

aCharacter
start aBlock
indexOf: startingAt:

ifAbsent:

Answer the index of the first occurrence of aCharacter in the
receiver, beginning at index start. If not present, answer the
value of aBlock.

Ê

 aCharacterSetindexOfAnyOf:
Answers the index of the first occurrence in the receiver of
any character in the given set. Returns 0 if none is found.

Ê1

Notes

1. As with #indexOf:, there are corresponding messages #indexOfAnyOf:ifAbsent:, #indexOfAnyOf:startingAt: and
#indexOfAnyOf:startingAt:ifAbsent:)

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 17 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Methods for comparing Strings

Message Description Notes

= aString Answer whether the receiver is equal to aString.The comparison is case-sensitive, Ê

< aString,
<= aString
> aString
>= aString

Answer whether the receiver sorts as indicated with aString. The collation order
is that of the Squeak character set, and therefore case-sensitive,

 aStringsameAs: Answer whether the receiver is equal to aString, ignoring differences of case. Ê

 aStringcompare:
Answer a code defining how the receiver sorts relative to the argument, aString. 1
- receiver before aString; 2 - receiver equal to aString; and 3 - receiver after aString.
The collation sequence is that of the Squeak character set and is case insensitive.

Ê

 textmatch:

Answer whether text matches the pattern in the receiver. Matching ignores
upper/lower case differences. Where the receiver contains #, text may contain any
character. Where the receiver contains *, text may contain any sequence of
characters.

Ê

prefix
beginsWith:

Answer whether the receiver begins with the argument, prefix. Ê

 prefixendsWith: Answer whether the receiver ends with the argument, prefix. Ê

 aStringalike:
Answer a non-negative integer indicating how similar the receiver is to aString. 0
means "not at all alike". The best score is aString size * 2.

Methods for converting Strings

Message Description Notes

asLowercase
Answer a new String that matches the receiver but without any upper case
characters.

Ê

asUppercase Answer a new String that matches the receiver but without any lower case characters. Ê

capitalized Answer a copy of the receiver with the first character capitalized if it is a letter. Ê

asDisplayText Answer a copy of the receiver with default font and style information.

asInteger
Attempts to parse the receiver as an Integer. Answers the Integer, or nil if the
receiver does not start with a digit.

asNumber
Attempts to parse the receiver as a Number. It is an error if the receiver does not
start with a digit.

asDate
Attempts to parse the receiver as a date, and answers an appropriate instance of
class Date. Many formats are recognized.

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 18 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Streaming Classes and Methods

The Stream Hierarchy

Class Description

Stream Abstract Class for Accessors

ÊÊÊÊPositionableStream Accessors for Collections Indexable by an Integer

ÊÊÊÊÊÊÊÊReadStream Read-Only

ÊÊÊÊÊÊÊÊWriteStream Write-Only

ÊÊÊÊÊÊÊÊÊÊÊÊReadWriteStream Read and/or Write

ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊFileStream Accessors for collections whose elements are "paged in"

ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊStandardFileStream Accessors for files accessed from a file system

ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊCrLfFileStream Automatically handles system-specific line endings

ÊÊÊÊDummyStream Like /dev/null

Class Stream

Stream is an abstract class for an accessor to a sequence of objects, called the contents. The stream is said to be "advanced" when the
stream is configured to access a later element of the contents.

Methods for accessing Streams

Message Description Notes

contents Answer the entire contents of the receiver. Ê

next Answer the next object accessible by the receiver. Ê

 anIntegernext: Answer the next anInteger number of objects accessible by the receiver. Ê

 n anObjectnext: put:
Make the next n objects accessible by the receiver anObject. Answer
anObject.

Ê

 aCollnextMatchAll:
Answer true if next N objects are the ones in aColl, else false. Advance
stream if true, leave as was if false.

Ê

anObject
nextMatchFor: Answer whether the next object is equal to the argument, anObject,

advancing the stream.
Ê

 anObjectnextPut:
Insert the argument, anObject, as the next object accessible by the receiver.
Answer anObject.

Ê

 aCollectionnextPutAll:
Append the elements of aCollection to the sequence of objects accessible
by the receiver. Answer aCollection.

Ê

upToEnd Answer the remaining elements in the string Ê

flush
Ensure that any objects buffered in the receiver are sent to their final
destination.

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 19 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Methods for testing Streams

Message Description Notes

atEnd Answer whether the receiver can access any more objects. Ê

Methods for enumerating Streams

Message Description Notes

aBlockdo: Evaluate aBlock for each of the remaining objects accessible by receiver. Ê

Class PositionableStream

PositionableStream is an abstract class for accessors to sequences of objects that can be externally named by indices so that the point
of access can be repositioned. Concrete classes ReadStream, WriteStream and ReadWriteStream are typically used to instantiate a
PositionableStream on Collections, depending upon the access mode. StandardFileStream and CRLFFileStream are typically used for
instantiating PositionableStreams for Files.

Methods for accessing PositionableStreams

Message Description Notes

contentsOfEntireFile Answer a collection containing the remainder of the receiver. Ê

last Return the final element of the receiver. Ê

terminator
nextDelimited:

Answer the contents of the receiver, from the current position up to the
next terminator character; provided, however, that doubled terminators
will be included as a single element.

Ê

 buffernextInto:
Given buffer, an indexable object of size n, fill buffer with the next n
objects of the receiver.

Ê

nextLine Answer next line (may be empty), or nil if at end Ê

originalContents
Answer the receiver's actual contents collection. (returns a
copy)

contents
Ê

peek
Answer what would be returned if the message were sent to the
receiver, but don't advance the receiver. If the receiver is at the end,
answer nil.

next
Ê

 anObjectpeekFor:
Answer false and do not move over the next element if it is not equal to
anObject, or if the receiver is at the end. Answer true and advance the
stream if the next element is equal to anObject.

Ê

 anObjectupTo:
Answer a subcollection from the current access position to the occurrence
(if any, but not inclusive) of anObject in the receiver. If anObject is not in
the collection, answer the entire rest of the receiver.

Ê

 aCollectionupToAll:
Answer a subcollection from the current access position to the occurrence
(if any, but not inclusive) of aCollection. If aCollection is not in the
stream, answer the entire rest of the stream.

Ê

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 20 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Methods for testing PositionableStreams

Message Description Notes

isEmpty Answer whether the receiver's contents has no elements. Ê

Methods for positioning PositionableStreams

Message Description Notes

 subCollectionmatch:
Set the access position of the receiver to be past the next occurrence of
the subCollection. Answer whether subCollection is found. No
wildcards, case sensitive.

Ê

 nBytes
aCharacter
padTo: put:

Pad, using aCharacter, to the next boundary of nBytes. Ê

charpadToNextLongPut:
Make position be on long word boundary, writing the padding character,
char, if necessary.

Ê

position Answer the current position of accessing the sequence of objects. Ê

 anIntegerposition:
Set the current position for accessing the objects to be anInteger, as long
as anInteger is within the bounds of the receiver's contents. If it is not,
create an error notification.

Ê

reset Set the receiver's position to the beginning of the sequence of objects. Ê

resetContents Set the position and limits to 0. Ê

setToEnd Set the position of the receiver to the end of the sequence of objects. Ê

 anIntegerskip:

Set the receiver's position to be the current position+anInteger. A
subclass might choose to be more helpful and select the minimum of the
receiver's size and position+anInteger, or the maximum of 1 and
position+anInteger for the repositioning.

Ê

 anObjectskipTo:
Set the access position of the receiver to be past the next occurrence of
anObject. Answer whether anObject is found.

Ê

Class WriteStream

Methods for writing characters on WriteStreams

Message Description Notes

cr Append a return character to the receiver. Ê

crtab Append a return character, followed by a single tab character, to the receiver. Ê

anIntegercrtab: Append a return character, followed by anInteger tab characters, to the receiver. Ê

space Append a space character to the receiver. Ê

tab Append a tab character to the receiver. Ê

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 21 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

ANSI-Compatible Exceptions

Evaluating Blocks with Exceptions

Methods for handling Exceptions raised in a BlockContext

Message Description Notes

 aTerminationBlockensure:
Evaluate aTerminationBlock after evaluating the receiver,
regardless of whether the receiver's evaluation completes.

Ê

aTerminationBlockifCurtailed:
Evaluate the receiver. If it terminates abnormally, evaluate
aTerminationBlock.

Ê

 exception
handlerActionBlock
on: do: Evaluate the receiver in the scope of an exception handler,

handlerActionBlock.
Ê

Examples

["target code, which may abort"]
 ensure:
 ["code that will always be executed
 after the target code,
 whatever whatever may happen"]

["target code, which may abort"]
 ifCurtailed:
 ["code that will be executed
 whenever the target code terminates
 without a normal return"]

["target code, which may abort"]
 on: Exception
 do: [:exception |
 "code that will be executed whenever
 the identified Exception is signaled."]

Exceptions

Exception is an abstract class; instances should neither be created nor trapped. There are two common subclasses of Exception, Error
and Notification, from which subclasses normally inherit. Errors are not resumable; a Notification is an indication that something
interesting has occurred; if it is not handled, it will pass by without effect.

Exceptions play two distinct roles: that of the exception, and that of the exception handler.

Methods for describing Exceptions

Message Description Notes

defaultAction The default action taken if the exception is signaled. Ê

description Return a textual description of the exception. Ê

isResumable Determine whether an exception is resumable. Ê

messageText Return an exception's message text. Ê

tag Return an exception's tag value. Ê

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 22 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Methods for signalling Exceptions

Message Description Notes

signal Signal the occurrence of an exceptional condition. Ê

signalerText
signal: Signal the occurrence of an exceptional condition with a specified textual

description.
Ê

Methods for dealing with a signaled Exception

Message Description Notes

isNested
Determine whether the current exception handler is within the
scope of another handler for the same exception.

Ê

outer Evaluate the enclosing exception action for the receiver and return. Ê

pass Yield control to the enclosing exception action for the receiver. Ê

replacementException
resignalAs:

Signal an alternative exception in place of the receiver. Ê

resume Return from the message that signaled the receiver. Ê

 resumptionValueresume:
Return the argument as the value of the message that signaled the
receiver.

Ê

retry Abort an exception handler and re-evaluate its protected block. Ê

 alternativeBlockretryUsing:
Abort an exception handler and evaluate a new block in place of
the handler's protected block.

Ê

return
Return nil as the value of the block protected by the active
exception handler.

Ê

 returnValuereturn:
Return the argument as the value of the block protected by the
active exception handler.

Ê

Class ExceptionSet

An ExceptionSet is used to specify a set of exceptions for an exception handler.

Creating ExceptionSet

Message Description Notes

anException
, Receiver may be an Exception class or an ExceptionSet. Answers an exception set that

contains the receiver and anException.
Ê

Example

["target code, which may abort"]
 on: Exception, Error, ZeroDivide
 do:
 [:exception |
 "code that will be executed whenever
 one of the identified Exceptions is
 signaled."]

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 23 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

The Squeak Class Hierarchy

In Smalltalk, "everything is an object." That is, everything is an instance of class Object or an instance of some subclass of class
Object. Everything. Numbers, Classes, Metaclasses, everything. I refer to this as the "Object rule."

Actually, Squeak bends this rule a little bit; the Object rule does not apply for certain system objects, which derive from class
ProtoObject. Nevertheless, except for these few system objects, the vast majority of Squeak objects, which I call, "proper objects,"
satisfy the Object Rule. Proper Objects and their classes and metaclasses, satisfy the following properties.

The Laws of Proper (Smalltalk) Classes

Every proper class is a subclass of class Object, except for Object itself, which has no proper superclass. In particular, Class is a
subclass of ClassDescription, which is a subclass of Behavior which is a subclass of Object.
Every object is an instance of a class.
Every class is an instance of a metaclass.
All metaclasses are (ultimately) subclasses of Class.
Every metaclass is an instance of MetaClass.
The methods of Class and its superclasses support the behavior common to those objects that are classes.
The methods of instances of MetaClass add the behavior specific to particular classes.

Class ProtoObject

Squeak additionally supports an improper class ProtoObject, from which object hierarchies other than proper instances and proper
classes can inherit. ProtoObject is the superclass of class Object and has no instances. Presently, there are two subclasses of
ProtoObject besides Object: ObjectOut and ImageSegmentRootStub, both of which are used to do magic involving objects that have
been moved out of memory onto an external medium. You might need to subclass ProtoObject if you are doing something like
implementing a remote message send system where you have proxies for remote objects (those on another computer).

However, as with proper classes, ProtoObject, is an instance of a metaclass, ProtoObject class, which in turn is an instance of class
MetaClass.

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 24 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

Categories of Squeak Classes

This quick reference only scratches the surface of the functionality available through Squeak. To assist the beginner in surveying the
system, the following outline of the major Squeak is provided.packages

Category Description

Kernel
Primary Smalltalk classes for creating and manipulating Smalltalk objects, the Object
hierarchy, coroutines and parallel processes. Subcategories include: Objects, Classes,
Methods and Processes.

Numeric
Classes for numeric operations, including date and time operations. Subcategories include
Magnitudes and Numbers

Collections Classes for aggregations of Smalltalk objects.

Graphics
Core classes for Smalltalk graphic objects as well as facilities and applications for
operating on graphic objects. Key classes include Form and BitBlt.

Interface
The "traditional" MVC User Interface Framework. Also found here are a number of
useful Smalltalk applications, including: Squeak browsers, a mail client, a web browser,
IRC chat client and facilities for operating on "projects."

Morphic Squeak's Morphic User Interface Framework

Music
Classes supporting Squeak's Sound Synthesis capabilities. Also found here are several
useful facilities and applications for manipulating MIDI data and other representations
of musical scores.

System
Key System Facilities. Subclasses include: Compiler (Smalltalk compiler); Object Storage
(virtual memory for Smalltalk objects); File facilities; Compression; Serial Data
Transmission; Basic network facilities.

Exceptions Class supporting Squeak's ANSI-compliant exceptions facilities.

Network Classes implementing various Internet and Squeak related network protocols.

PluggableWebServer
A complete web-server application, including an implementation of Swiki, a collaborative
world-wide-web environment. Key classes include: PWS

HTML Classes for manipulating HTML data.

Squeak
Here lives the mouse. Key classes include: the Squeak VM and an interpreter; the Squeak
Smalltalk Subset (Slang) to C translator; and facilities for developing native plugins
(pluggable primitives).

Balloon Classes for complex 2-D graphic objects and fast 2-D graphics rendering.

Balloon-3D Classes for complex 3-D graphics objects and fast 3-D graphics rendering.

TrueType Classes for manipulating and displaying TrueType data.

MM-Flash Classes for manipulating and displaying Flash file data.

Alice &
Wonderland

A remarkable interactive 3-D graphics environment.

2001.04.27 1:24Squeak Smalltalk: Classes Reference

Page 25 of 25file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Classes%20Ref.html#CollectionClasses

