
Squeak Smalltalk: Language Reference

Version 0.0, 20 November 1999, by Andrew C. Greenberg, werdna@mucow.com
Version 1.2, 26 April 2001, by Andrew P. Black, black@cse.ogi.edu

Based on:
 Smalltalk-80: The Language and Its Implementation, Author: Adele Goldberg and David Robson
 Squeak Source Code, and the readers of the Squeak mailing list.

Squeak site: http://www.squeak.org

Contents

Using Squeak
Squeak Smalltalk Syntax

See also the Squeak Classes Reference page

Using Squeak: the Basics

Mousing Around
System Menus
System Key Bindings

Mousing Around

Squeak (and the Smalltalk-80 from which it was spawned) assumes a machine with a three-button mouse (or its equivalent). These buttons were
referred to as "red," "yellow" and "blue." The red button was conventionally used for selecting "things," the yellow button was conventionally
used for manipulating "things" within a window and the blue button was conventionally used for manipulating windows themselves. Conventions,
of course, are not always followed.

Since many modern mice no longer have three buttons, let alone colored ones, various mapping conventions are used:

For uncolored three-button mice, the usual mapping is:

left-mouse -> red
middle-mouse -> yellow
right-mouse -> blue

Windows machines with three button mice can be made to conform to this mapping by right clicking the Windows
title bar of Squeak, and selecting >> Otherwise, for Windows
machines with two button mice, the mapping is:

VM Preferences Use 3 button mouse mapping.

left-mouse -> red
right-mouse -> yellow
alt-left-mouse -> blue

MacOS Systems generally have one mouse button. The mapping is:

mouse -> red
option-mouse -> yellow

-mouse -> blue

It is worthwhile purchasing a 3-button mouse for your computer. I put colored labels on my buttons while I was
training my fingers. I also chose a different mapping.

If you have a mouse with a scrolling wheel, map "wheel up" to command-upArrow and "wheel down" to command-downArrow, and you will be
able to use the wheel to control scrolling in Squeak.

2001.05.22 19:27Squeak Smalltalk: Basic Language Reference

Page 1 of 13http://www.cse.ogi.edu/~black/ecoop2001/SqueakLanguageRef.html

System Menus

Squeak provides access to certain Smalltalk services through its system menus, some of which are depicted below:

. The World menu, sometimes called the "main menu," can be reached by clicking the red button while the mouse points to the
background of a system project. From this menu, you can save the image and changes files, save them in files with a different name, and terminate
execution of the Squeak virtual machine. You can also access many other menus ... including the four shown here.

The Main Menu

 provides access to many system tools, including system browsers, workspaces, change sorters, transcripts and file lists, as well
as end user tools such as an email agent () and web browser ().
The open Menu

Celeste Scamper

 provides access to certain on-line help facilities as well as a preferences dialog, some environment enquiries, a dictionary and
facilities for updating your version of Squeak.
The help Menu

provides access to services for manipulating system windows and (in Morphic only) . Flaps are small tabs at
the side of the screen that pull out like drawers and provide quick access to whatever you place there. Try them! The flap is a very
convenient way of getting new system tools (rather than using the menu).

The windows and flaps Menu flaps
Tools

open

 lets the user change various aspects of the systems appearance. In particular, it provides a way of adjusting the display
depth and going in and out of full screen mode.
The appearance menu

System Key Bindings

Applications that use standard Squeak text container widgets, including System Browsers, Workspaces, File Lists and Transcripts, provide
facilities for manipulating the text and providing access to other system functionality. Many of these facilities can be reached by using the red-
button menus, but many are more conveniently accessed using special key sequences. Of course, particular applications can use some, all or of
none of these. In the following tables, a lower-case or numeric command "key" can be typed by simultaneously pressing the key and the Alt key
(on Windows) or the key (on MacOS). Upper-case keys are typed by simultaneously pressing either Shift-Alt (or Shift-) and the indicated
key, ctrl and the indicated key. Other special key presses are indicated below in square brackets.or

2001.05.22 19:27Squeak Smalltalk: Basic Language Reference

Page 2 of 13http://www.cse.ogi.edu/~black/ecoop2001/SqueakLanguageRef.html

General Editing Commands

Key Description Notes

z Undo

x Cut

c Copy

v Paste

a Select all

D Duplicate. Paste the current selection over the prior selection, if it is non-overlapping and legal 1

e Exchange. Exchange the contents of current selection with the contents of the prior selection 1

y
Swap. If there is no selection, swap the characters on either side of the insertion cursor, and advance the
cursor. If the selection has 2 characters, swap them, and advance the cursor.

w Delete preceding word

Notes

1. These commands are a bit unusual: they concern and affect not only the current selection, but also the immediately preceding selection.

Search and Replace

Key Description Notes

f
Find. Set the search string from a string entered in a dialog. Then, advance the cursor to the next
occurrence of the search string.

g Find again. Advance the cursor to the next occurrence of the search string.

h Set Search String from the selection.

j Replace the next occurrence of the search string with the last replacement made

A
Advance argument. Advance the cursor to the next keyword argument, or to the end of string if no
keyword arguments remain.

J Replace all occurrences of the search string with the last replacement made

S Replace all occurrences of the search string with the present change text

Cancel/Accept

Key Description Notes

l Cancel (also "revert"). Cancel all edits made since the pane was opened or since the last save

s Accept (also "save"). Save the changes made in the current pane.

o
Spawn. Open a new window containing the present contents of this pane, and then reset this window to
its last saved state (that is, cancel the present window).

2001.05.22 19:27Squeak Smalltalk: Basic Language Reference

Page 3 of 13http://www.cse.ogi.edu/~black/ecoop2001/SqueakLanguageRef.html

Browsing and Inspecting

Key Description Notes

b Browse "it" (where "it" is a class name). Opens a new browser. 1

d Do "it" (where "it" is a Squeak expression) 1

i
Inspect "it": evaluate "it" and open an inspector on the result. ("it" is a Squeak expression). Exception: in
a method list pane, i opens an inheritance browser.

1

m Open a browser of methods implementing "it" (where "it" is a message selector) 1,2

n Open a browser of methods that send "it" (where "it" is a message selector). 1,2

p Print "it". Evaluate "it" and insert the results immediately after "it." (where "it" is a Smalltalk expression) 1

B Set the browser to browse "it" (where "it" is a class name)present 1

E Open a browser of methods whose source contain strings with "it" as a substring. 1

I Open the Object Explorer on "it" (where "it" is an expression) 1

N Open a browser of methods using "it" (where "it" is an identifier or class name) 1

O Open single-message browser (in selector lists) 1

W Open a browser of methods whose selectors include "it" as a substring. 1

Notes:

1. A null selection will be expanded to a word, or to the whole of the current line, in an attempt to do what you want.
2. For these operations, "it" means the keyword selector in a large selection.outermost

Special Conversions and Processing

Key Description Notes

C Open a workspace showing a comparison of the selection with the contents of the clipboard

U Convert linefeeds to carriage returns in selection

X Force selection to lowercase

Y Force selection to uppercase

Z Capitalize all words in selection

2001.05.22 19:27Squeak Smalltalk: Basic Language Reference

Page 4 of 13http://www.cse.ogi.edu/~black/ecoop2001/SqueakLanguageRef.html

Smalltalk Program Data Entry

Key Description Notes

q
Attempt to complete the selection with a valid and defined Smalltalk selector. Repeated
commands yield additional selectors.

r
Recognizer. Invoke the Squeak glyph character recognizer. (Terminate recognition by mousing out
of the window)

F Insert 'ifFalse:'

T Insert 'ifTrue:'

V Paste author's initials, date and time.

L Outdent (move selection or line one tab-stop left)

R Indent (move selection or line one tab stop right)

[Ctl-return]
Insert return followed by as many tabs as the previous line (with a further adjustment for
additional brackets in that line)

[shift-delete] Forward delete. Or, deletes from the insertion point to the beginning of the current word.

Bracket Keys

These keys are used to enclose (or un-enclose, if the selection is already enclosed) the selection in a kind of "bracket". Conveniently, double
clicking just inside any bracketed text selects the entire text, but not the brackets.

Key Description Notes

Control-(Enclose within (and), or remove enclosing (and)

Control- [Enclose within [and], or remove enclosing [and]

Control- { Enclose within { and }, or remove enclosing { and }

Control- < Enclose within < and >, or remove enclosing < and >

Control- ' Enclose within ' and ', or remove enclosing ' and '

Control- " Enclose within " and ", or remove enclosing " and "

2001.05.22 19:27Squeak Smalltalk: Basic Language Reference

Page 5 of 13http://www.cse.ogi.edu/~black/ecoop2001/SqueakLanguageRef.html

Keys for Changing Text Style and Emphasis

Key Description Notes

k Set font

u Align

K Set style

1 10 point font

2 12 point font

3 18 point font

4 24 point font

5 36 point font

6
Brings up a menu, providing choice of color, action-on-click, link to class comment, link to method,
url.. To remove these properties, select more than the active part and then use command-0.

7 bold

8 italic

9 narrow (same as negative kern)

0 plain text (removes all emphasis)

- (minus) underlined (toggles it)

= struck out (toggles it)

_ (a.k.a.
shift -)

negative kern (letters 1 pixel closer)

+ (a.k.a.
shift =)

positive kern (letters 1 pixel further apart)

Squeak Smalltalk Syntax: the Basics

Pseudo-variables
Identifiers
Comments
Literals
Assignments
Messages
Expression Sequences
Cascades
Expression Blocks
Control Structures
Brace Arrays
Class Definition
Method Definition

2001.05.22 19:27Squeak Smalltalk: Basic Language Reference

Page 6 of 13http://www.cse.ogi.edu/~black/ecoop2001/SqueakLanguageRef.html

Pseudo-Variables

Pseudo-variable Description

nil The singleton instance of Class UndefinedObject

true The singleton instance of Class True

false The singleton instance of Class False

self The current object, that is, the receiver of the current message.

super
As the receiver of a message, refers to the same object as . However, when a message is
sent to , the search for a suitable method starts in the superclass of the class whose method
definition contains the word .

super self
super

super

thisContext The active context, that is, the "currently executing" MethodContext or BlockContext.

Pseudo-variables are reserved identifiers that are similar to keywords in other languages.
, and are constants.nil true false
, and vary dynamically as code is executed.self super thisContext

It is not possible to assign to any of these pseudo-variables.

Identifiers

 letter (letter | digit)*

Smalltalk identifiers (and symbols) are .case-sensitive
It is a Smalltalk convention for identifiers (instance and temporaries) of several words to begin with a lower case character, and then
capitalize subsequent words. (, thisIsACompoundIdentifier).e.g.
Certain identifiers, for example, globals (, Smalltalk) and class variables, are by convention initially capitalized. The names of all classes
are also global variables (, SystemDictionary).

e.g.
e.g.

Comments

a comment comprises any sequence of characters, surrounded by double quotes
comments can include the 'string delimiting' character
and comments can include embedded double quote characters by ""doubling"" them
comments can span many

many
lines

" "
" "
" "
"

"

Literals (Constant Expressions)

Numbers (Instances of class Number)

In the following, ==> means "prints as".

Decimal integer: ,
Octal integer: ,
Hex integer: ,
Arbitrary base integer: ==> 10
Integer with exponent: ==> 12300, ==> 40
Float (double precision):
Arbitrary base float: ==> 1.5
Float with exponent: ==> 6.0

1234 12345678901234567890
8r177 8r1777777777777777777777

16rFF 16r123456789ABCDEF012345
2r1010
123e2 2r1010e2

3.14e-10
2r1.1
2r1.1e2

Squeak supports SmallInteger arithmetic (integers between -2 and 2) with fast internal primitives.30 30-1

Squeak supports arbitrary precision arithmetic seamlessly (automatically coercing SmallInteger to LargePositiveInteger and
LargeNegativeInteger where appropriate), albeit at a slight cost in speed.
Squeak supports several other kinds of "numeric" value, such as Fractions (arbitrary precision rational numbers) and Points. While there are
no literals for these objects, they are naturally expressed as operations on built-in literals. ("2/3" and "2@3", respectively)
Numbers may be represented in many radices, but the radix specification itself is always expressed in base 10. The base for the exponent

part is the same as the radix. So: ==> 10, ==> 1000 (=10 x 10), but ==> 40 (=10 x 2)2r1010 10e2 2 2r1010e2 2

Characters (Instances of class Character)

2001.05.22 19:27Squeak Smalltalk: Basic Language Reference

Page 7 of 13http://www.cse.ogi.edu/~black/ecoop2001/SqueakLanguageRef.html

 "A character is any character (even unprintable ones), preceded by a dollar sign"
 "Don't be shy about characters that are digits"
 "or symbols"
 "or even the dollar sign"

$x
$3
$<
$$

Strings (Instances of class String)

a string comprises any sequence of characters, surrounded by single quotes
strings can include the "comment delimiting" character
and strings can include embedded single quote characters by doubling'' them
strings can contain embedded
newline characters

 "and don't forget the empty string"

' '
' '
' '
'

'
''

A string is very much like ("isomorphic to") an array containing characters. Indexing a string answers characters at the corresponding
position, staring with 1.

Symbols (Instances of class Symbol)

A string preceded by a hash sign is a Symbol
orAnyIdentifierPrefixedWithAHashSign
orAnIdentifierEndingWithAColon:
or:several:identifiers:each:ending:with:a:colon:
- "A symbol can also be a hash followed by '-' or any special character"
+< "or a hash followed by any pair of special characters"

#' '
#
#
#
#
#

Symbol is a subclass of String, and understands, in large part, the same messages.
The primary difference between a symbol and a string is that all symbols comprising the same sequence of characters are the same instance.
Two different string instances can both have the characters 'test one two three', but every symbol having the characters #'test one two three'
is the same instance. This "unique instance" property means that Symbols can be efficiently compared, because equality (=) is the same as
identity (==).
"Identifier with colon" Symbols (#a:keyword:selector:) are often referred to as keyword selectors, for reasons that will be made clear
later.

e.g.,

"Single or dual symbol" Symbols (#* or #++) are often referred to as binary selectors.e.g.,
The following are permissible special characters: +/*\~<=>@%|&?!
Note that #-- is not a symbol (or a binary selector). On the other hand, #'--' a symbol (but not a binary selector).is

Constant Arrays (Instances of class Array)

 1 2 3 4 5 "An array of size 5 comprising five Integers (1 to 5)"
 'this' #is $a #'constant' array "An array of size 5 comprising a String ('this'), a Symbol (#is), a Character ($a) and two Symbols (#constant and

#array)."
 1 2 (1 #(2) 3) 4 "An array of size 4 comprising two Integers (1 and 2), an Array of size 3, and another Integer (4)."
 1 + 2 "An array of size 3 comprising 1, #+, and 2. It is the singleton array comprising 3."

#()
#()

#()
#() not

Constant arrays are constants, and their elements must therefore be constants. "Expressions" are not evaluated, but are generally parsed as
sequences of symbols as in the example above.
Constant arrays may contain constant arrays. The hash sign for internal constant arrays is optional.
Identifiers and sequences of characters in constant arrays are treated as symbols; the hash sign for internal symbols is optional.
Arrays are indexed with the first element at index 1.

Assignments

identifier expression
identifier := expression " := is always a legal alternative to , but the pretty printer uses "

foo 100 factorial
foo bar 1000 factorial

The identifier (whether instance variable, class variable, temporary variable, or otherwise) will thereafter refer to the object answered by the
expression.
The " " glyph can be typed in Squeak by keying the underbar character (shift-hyphen).
Assignments are expressions; they answer the result of evaluating the right-hand-side.
Assignments can be cascaded as indicated above, resulting in the assignment of the same right-hand-side result to each variable.

2001.05.22 19:27Squeak Smalltalk: Basic Language Reference

Page 8 of 13http://www.cse.ogi.edu/~black/ecoop2001/SqueakLanguageRef.html

Messages

Unary Messages

theta sin
quantity sqrt
nameString size
1.5 tan rounded asString "same result as (((1.5 tan) rounded) asString)"

Unary messages are messages without arguments.
Unary messages are the most "tightly parsed" messages, and are parsed left to right. Hence, the last example answers the result of sending
#asString to the result of sending #rounded to the result of sending #tan to 1.5

Binary Messages

3 + 4 " ==> 7 "
3 + 4 * 5 " ==> 35 (23) "
3 + 4 factorial " ==> 27 (5040) "
total - 1
total <= max "true if total is less than or equal to max"
(4/3)*3 = 4 "==> true � equality is just a binary message, and Fractions are exact"
(3/4) == (3/4) "==> false � two equal Fractions, but not the same object"

not
not

Binary messages have a receiver, the left hand side, and a single argument, the right hand side. The first expression above sends 3 the
message comprising the selector #+ with the argument 4.
Binary messages are parsed left to right, without regard to precedence of numeric operators, unless corrected with parentheses.always
Unary messages bind more tightly than binary messages

Keyword Messages

12 between: 8 and: 15 " ==> true "
#($t $e $s $t) at: 3 " ==> $s "
array at: index put: value "==> answers value, after storing value in array at index"
array at: index factorial put: value "same, but this time stores at index factorial"
1 to: 3 do: aBlock "This sends #to:do: (with two parameters) to integer 1"
(1 to: 3) do: aBlock "This sends #do: (with one parameter) to the Interval given by evaluating '1 to: 3'"

Keyword messages have 1 or more arguments
Keyword messages are the least-tightly binding messages. Binary and unary messages are resolved first unless corrected with parentheses.

Expression Sequences

expressionSequence ::= expression (. expression)* (.)opt

box 20@30 corner: 60@90.
box containsPoint: 40@50

Expressions separated by are executed in sequence.periods
Value of the sequence is the value of the final expression.
The values of all of the other expressions are ignored.
A final period is optional.

Cascade Expressions

receiver
 unaryMessage;
 + 23;
 at: 23 put: value;
 yourself

messages in a cascade are separated by ; each message is sent to in sequence.semicolons receiver
Intermediate answers are ignored, but side-effects on will be retained.receiver
The cascade answers the result of sending the last message to (after sending all the preceding ones!)receiver

2001.05.22 19:27Squeak Smalltalk: Basic Language Reference

Page 9 of 13http://www.cse.ogi.edu/~black/ecoop2001/SqueakLanguageRef.html

Block Expressions

Blocks, actually instances of the class BlockContext. They are used all the time to build control structures. Blocks are created using the syntax
around a sequence of expressions.

[]

expressionSequence "block without arguments"

 (: identifier) | expressionSequence "block with arguments"

(: identifier) | | identifier | expressionSequence "block with arguments and local variables"

[]
[+]
[+ +]

 1. 2. 3 "a block which, when evaluated, will answer the value 3"
 object doWithSideEffects. test "a block which, when evaluated, will send #doWithSideEffects to object, and answer the object test"
 :param param doSomething "a block which, when evaluated with a parameter, will answer the result of sending #doSomething to the

parameter.

[]
[]
[|]

A block represents a deferred sequence of actions.
The value of a block expression is an object that can execute the enclosed expressions at a later time, if requested to do so. Thus

 1. 2. 3 ==> [] in UndefinedObject>>DoIt
 1. 2. 3 value ==> 3

[]
[]

Language experts will note that blocks are rougly equivalent to lambda-expressions, anonymous functions, or closures.

Evaluation Messages for BlockContext

Message Description Notes

value Evaluate the block represented by the receiver and answer the result. 1

 argvalue:
Evaluate the block represented by the receiver, passing it the value of the
argument, arg.

2

anArray
valueWithArguments:

Evaluate the block represented by the receiver. The argument is an Array
whose elements are the arguments for the block. Signal an error if the length of
the Array is not the same as the the number of arguments that the block was
expecting.

3

Notes

1. The message , sent to a block, causes the block to be executed and answers the result. The block must require zero arguments.#value
2. The message , causes the block to be executed. The block must require exactly one argument; the corresponding parameter is

initialized to .
 #value: arg
arg

3. Squeak also recognizes , and . If you have a block with more than
four parameters, you must use

#value:value: #value:value:value: #value:value:value:value:
#valueWithArguments:

2001.05.22 19:27Squeak Smalltalk: Basic Language Reference

Page 10 of 13http://www.cse.ogi.edu/~black/ecoop2001/SqueakLanguageRef.html

Control Structures

Alternative Control Structures (Receiver is Boolean)

Message Description Notes

 alternativeBlockifTrue:
Answer nil if the receiver is false. Signal an Error if the receiver is
nonBoolean. Otherwise, answer the result of evaluating
alternativeBlock

1,2

 alternativeBlockifFalse:
Answer nil if the receiver is true. Signal an Error if the receiver is
nonBoolean. Otherwise answer the result of evaluating the argument,
alternativeBlock.

1,2

 trueAlternativeBlock
falseAlternativeBlock
ifTrue: ifFalse:

Answer the value of trueAlternativeBlock if the receiver is true.
Answer the value of falseAlternativeBlock if the receiver is false.
Otherwise, signal an Error.

1,2

falseAlternativeBlock
trueAlternativeBlock
ifFalse: ifTrue:

Same as ifTrue:ifFalse:. 1,2

Notes

1. These are not technically control structures, since they can be understood as keyword messages that are sent to boolean objects. (See the
definitions of these methods in classes True and False, respectively).

2. However, these expressions play the same role as control structures in other languages.

Alternative Control Structures (Receiver is any Object)

Message Description Notes

 nilBlockifNil:
Answer the result of evaluating nilblock if the receiver is nil. Otherwise
answer the receiver.

ifNotNilBlockifNotNil:
Answer the result of evaluating ifNotNilBlock if the receiver is not nil.
Otherwise answer nil.

nilBlock
ifNotNilBlock
ifNil: ifNotNil: Answer the result of evaluating nilBlock if the receiver is nil. Otherwise

answer the result of evaluating ifNotNilBlock.

ifNotNilBlock
nilBlock
ifNotNil: ifNil:

Same as #ifNil:ifNotNil:

Iterative Control Structures (receiver is aBlockContext)

Message Description Notes

whileTrue Evaluate the receiver. Continue to evaluate the receiver for so long as the result is true.

aBlockwhileTrue: Evaluate the receiver. If true, evaluate aBlock and repeat.

whileFalse Evaluate the receiver. Continue to evaluate the receiver for so long as the result is false.

aBlockwhileFalse: Evaluate the receiver. If false, evaluate aBlock and repeat.

2001.05.22 19:27Squeak Smalltalk: Basic Language Reference

Page 11 of 13http://www.cse.ogi.edu/~black/ecoop2001/SqueakLanguageRef.html

Enumeration Control Structures (Receiver is anInteger)

Message Description Notes

aBlocktimesRepeat: Evaluate the argument, aBlock, the number of times represented by the receiver.

 stop aBlockto: do:
Evaluate aBlock with each element of the interval (self to: stop by: 1) as the
argument.

 stop step
aBlock
to: by: do: Evaluate aBlock with each element of the interval (self to: stop by: step) as the

argument.

Enumeration Control Structures (Receiver is Collection)

Message Description Notes

aBlockdo: For each element of the receiver, evaluate aBlock with that element as the argument. 1

Note

1. Squeak collections provide a very substantial set of enumeration operators. See the section on the Classes
Reference.

Enumerating Collections

Case Structures (Receiver is any Object)

Message Description Notes

aBlockAssociationCollectioncaseOf:
Answer the evaluated value of the first association in
aBlockAssociationCollection whose evaluated key equals the
receiver. If no match is found, signal an Error.

1

aBlockAssociationCollection
 aBlock

caseOf:
otherwise:

Answer the evaluated value of the first association in
aBlockAssociationCollection whose evaluated key equals the
receiver. If no match is found, answer the result of evaluating
aBlock.

1

Note

1. aBlockAssociationCollection is a collection of Associations (key/value pairs).
Example: aSymbol caseOf: {[#a]->[1+1]. ['b' asSymbol]->[2+2]. [#c]->[3+3]}

Expression "Brace" Arrays

 braceArray ::= expressionSequence

 1. 2. 3. 4. 5 "An array of size 5 comprising five Integers (1 to 5)"
 $a. #brace. array "An array of size 3 comprising a Character ($a) a Symbol (#brace), and the variable array."
 1 + 2 "An array of size 1 comprising the single integer 3."

{ }

{ }
{ } the present value of
{ }

Brace arrays are bona-fide Smalltalk expressions that are computed at runtime.
The elements of a brace array are the answers of its component expressions.
They are a sometimes convenient and more general alternative to the clunky expression "Array with: expr1 with: expr2 with: expr3"
Indexing is 1-based.

2001.05.22 19:27Squeak Smalltalk: Basic Language Reference

Page 12 of 13http://www.cse.ogi.edu/~black/ecoop2001/SqueakLanguageRef.html

Answer Expressions

answerExpression ::= ^ expression

^ aTemporary
^ 2+3

Inside the body of a method, an answer expression is used to terminate the execution of the method and deliver the expression as the
method's answer.
Answer expressions inside a nested block expression will terminate the enclosing method.

Class Definition

Ordinary Class Definition

SuperClass subclass: #NameOfClass
 instanceVariableNames: 'instVarName1 instVarName2'
 classVariableNames: 'ClassVarName1 ClassVarName2'
 poolDictionaries: ''
 category: 'Major-Minor'

Variable Class Definition

These forms of class definition are used to create indexable objects, , those like Array, ByteArray and WordArray. They are included here for
completeness, but are not normally used directly; instead, use an ordinary object with an instance variable whose value is an approriate Array (or
other collection) object.

i.e.

SuperClass variableSubclass: #NameOfClass
 instanceVariableNames: 'instVarName1 instVarName2'
 classVariableNames: 'ClassVarName1 ClassVarName2'
 poolDictionaries: ''
 category: 'Major-Minor'

SuperClass variableByteSubclass: #NameOfClass
 instanceVariableNames: 'instVarName1 instVarName2'
 classVariableNames: 'ClassVarName1 ClassVarName2'
 poolDictionaries: ''
 category: 'Major-Minor'

SuperClass variableWordSubclass: #NameOfClass
 instanceVariableNames: 'instVarName1 instVarName2'
 classVariableNames: 'ClassVarName1 ClassVarName2'
 poolDictionaries: ''
 category: 'Major-Minor'

Method Definition

All methods answer a value; there is an implicit at the end of every method to make sure that this is the case. Here is an example (from
class String).

^ self

"Answer the number of lines represented by the receiver, where every
 cr adds one line."

 | cr count |
 cr Character cr.
 count 1 min: self size.
 self do:
 [:c | c == cr ifTrue: [count count + 1]].
 ^ count

lllliiiinnnneeeeCCCCoooouuuunnnntttt

2001.05.22 19:27Squeak Smalltalk: Basic Language Reference

Page 13 of 13http://www.cse.ogi.edu/~black/ecoop2001/SqueakLanguageRef.html

