
1 Building Morphic User Interfaces
The real strength of Morphic lies in creating Morphic interfaces within
Morphic. Morphic interfaces don’t necessarily have to follow the MVC
paradigm, but they can. Morphic interfaces can also be assembled rapidly
by simply dragging and dropping them. We have already seen that one
morph can be added to another. From within Morphic, we say that one
morph can be embedded within another.

In this section, we’ll explore how to work with morphs from the user
interface perspective, and then from the programmer’s perspective. We’ll
use the same example, a simple simulation of an object falling, to explore
both sides. Along the way, we’ll describe the workings of Morphic.

1.1 Programming Morphs from the Viewer Framework
The Viewer framework (sometimes called etoys system) has been
developed by Scott Wallace of the Disney Imagineering Squeak team as
an easy-to-use programming environment for end users. It’s not a finished
item, and it may change dramatically in future versions of Squeak. But as-
is, it provides us a way of exploring Morphic before we dig into code.

We’re going to create a simulation of an object falling. Our falling
object will be a simple EllipseMorph. Our falling object will have a
velocity (initially zero) and a constant rate of acceleration due to gravity.
We’ll just use pixels on the screen as our distance units.

If you recall your physics, the velocity increases at the rate of the
acceleration constant. For our simulation, we’ll only compute velocity
and position discretely (i.e., at fixed intervals, rather than all the time the
way that the real world works). Each time element, we’ll move the object
the amount of the velocity, and we’ll increment the velocity by the amount
of the acceleration. This isn’t a very accurate simulation of a falling
object, but it’s enough for demonstration purposes.

For example, let’s say that we would run our discrete simulation
every second. Let’s say that velocity was currently 10 and the acceleration
was 3. We say that the object is falling 10 pixels per second, with an
acceleration of 3 pixels per second per second (that is, the velocity
increases by 3 pixels per second at each iteration, which occurs every
second). When the next second goes by, we add to the velocity so that it’s
13 pixels per second, and we move the object 13 pixels (because that’s the
velocity). And so on.

We’ll also create a Kick object. When the object is kicked, we’ll
imagine that the object has been kicked up a few number of pixels, and it’s
velocity again goes back to zero. Strictly speaking, an upward push on the
falling object would result in an upward velocity that would decrease as

2

This is a Chapter Title

gravity pulled the object back down. Again, we’re simplifying for the
sake of a demonstration.

Create three morphs (from the New Morph menu, or from the
Standard Parts bin, or from the Supplies flap): A RectangleMorph
(default gray), an EllipseMorph (default yellow), and a TextMorph
(appears in Supplies and Parts as “Text for Editing”). We’re going to use
the rectangle and text as our Kicker, and the ellipse as our falling object.

We’ll start out by creating our Kicker button. Click on the text so that
you can edit it, and change it to say “Kick.” Now Morphic-select it, and
drag it (via the black Pick Up halo) into the rectangle (Figure 1). Use the
control-click menu to embed the text into the rectangle. After you choose
the embed menu item, you will be asked to choose which morph you want
to embed the text into. Choose the RectangleMorph. (As we’ll see later
in this chapter, the other option, a PasteUpMorph, is actually the whole
Morphic world. It is possible to embed morphs into the desktop of a
Morphic World.) Once embedded, they move as one morph (Figure 2).

Figure 1: Dragging the TextMorph into the RectangleMorph

Figure 2: Once Embedded, They Drag Together

Now, let’s start programming our two morphs. Morphic-select the
ellipse and choose the center left (turquoise) halo, the View me halo. When
you do, a Viewer for the ellipse will open (Figure 3).

3

This is a Chapter Title

Figure 3: Opening a Viewer on the Ellipse

The Viewer is a kind of browser on a morph. It allows you to create
methods for this morph, instance variables for the given morph, and to
directly manipulate the morph. Click on one of the yellow exclamation
points—whatever the command is (say, Ellipse forward by 5) will be
executed, and the morph will move five pixels. Directly change the
number of the x or y coordinate, and the morph will move.

For what we want to do, change the heading of the ellipse to 180.
That means, it’s heading will be straight down. That’s important because
objects fall down. If the heading were zero, our object would fall up.

1.1.1 Adding an Instance Variable
We are going to need a velocity for our falling object, so let’s add an
instance variable to our ellipse. Click on the small tile of the ellipse inside
the viewer itself. (The leftmost tile of the ellipse in Figure 3 is actually a
tab. Click on it, and the viewer will slide to the right. Click it again to
open the viewer back up.) A pop-up menu will provide a number of
programming items, including adding a new instance variable (Figure 4).
Choose add a new instance variable and enter the name as velocity.

4

This is a Chapter Title

Figure 4: Adding an Instance Variable to a Morph

SideNote: Take note of what we’re doing here: We’re adding an instance
variable directly to an instance, not to the class. The Viewer system
offers a different kind of object-oriented programming, called Prototype-
based objects. Each of the morphs is a prototype that can be given
variables and methods directly. It is possible to then create new instance
morphs from these prototypes, and the new morphs will inherit the
variables and methods (called scripts in the Viewer system). We won’t be
going that far into Viewers in this book.

The viewer will then update to show the new instance variable (Figure
5). This instance variable can be accessed or set, just like any other
instance variable. In a few steps, we’ll use it in an equation for changing
the velocity by the amount of a gravitational constant.

Figure 5: Ellipse's Viewer with the new Velocity Instance Variable

5

This is a Chapter Title

1.1.2 Making our Ellipse Fall
We can then begin to program our falling object. Click on the “forward
by” tile and drag it off the viewer.

Figure 6: Creating Our First Viewer Script

Let’s make this script run all by itself. We’ll trigger it upon clicking
the mouse down upon the ellipse. Click and hold on the word normal.
You’ll get a pop-up menu of the conditions on which the script should run
(Figure 7). Choose mouseDown (Figure 8).

Figure 7: Changing the Conditions of the Script

Figure 8: How the Script Window Changes

Now, click on the ellipse. Each time that you click on it (actually, as
soon as you click down on it), it should jump forward five steps. You can
play with the amount of the jump in the script1 window to get different
amounts of jump.

When an object falls, it should move as much as its velocity, using the
simplified model of physics that we’re using. So, instead of the constant in
the script, we need to reference the velocity instance variable that we’ve
built. That’s fairly easily done. Click on the velocity tile in the ellipse’s
Viewer, and drag it over the constant in the script (Figure 9). Now, when

6

This is a Chapter Title

you click down on the ellipse, it moves forward as much as the value of
the velocity.

Figure 9: Dragging the Velocity over the Constant

The next step is to make the velocity increase at each time interval.
Go back up to the Viewer and click-and-drag on the arrow next to the
velocity. You’re now grabbing a set of tiles for setting the velocity. Drag
them into your script window, just above the forward by tiles. (You’ll find
that the other tiles literally move out of your way as you drag in your
tiles.) You’ll now be setting the velocity to 1 (Figure 10). Now click on
the little green arrow next to the 1. The line will expand to 1 + 1 (Figure
11). Go back up the Viewer and drag the velocity instance variable tile
over the second 1 (Figure 12). You’ve now constructed the falling script.
Your rate of acceleration is 1, and velocity will increase by it at each time
interval.

Figure 10: Setting Velocity to 1

Figure 11: Setting Velocity to 1 + 1

7

This is a Chapter Title

Figure 12: Setting Velocity to 1 + Velocity

You can really make this work now. Change the mouseDown trigger
on the script to ticking. A ticking script fires continuously at a regular
interval. (You can change the interval by clicking on the Ellipse script1
tile and choosing the menu item there.) You will find your ellipse falling
ever more rapidly toward the bottom, and then bounce when it gets to the
bottom. (That’s default Viewer behavior.) You can set the script back to
triggering normal (which means that it just sits) to stop the falling and to
be able to move the ellipse elsewhere.

Feel free to explore different values than 1 for the acceleration
constant. You can make small changes by clicking on the up or down
arrows next to the 1, or click right on the 1 and type whatever you want.
Be careful how large you make it, though! Remember that this value is the
amount of change of the velocity, so it compounds quickly.

If you want, you can now name your script. Click on the Ellipse
script1 tile, and choose Rename this script (Figure 13). You might call it
Fall.

Figure 13: Changing the Name of a Script

1.1.3 Building the Kicker
Now let’s build the kicker. Open up a Viewer on your kicker rectangle.
Drag out the tile that has the rectangle making a sound, and drop it to
make a new script. With this start, whenever we “kick” the ellipse, a
sound will be made. Feel free to use the up and down arrows on the sound
tile to explore other sounds, and pick the one that makes sense as the
“kick” sound to you. (Next chapter, we’ll talk about how to record new
sounds to use in the sound tile.) Go ahead and make this script work on
mouseDown. You can click the kick rectangle to hear the sound.

8

This is a Chapter Title

When we kick the object, we should move the object up a few pixels
(the effect of our kick), and we should set the velocity to zero. Your final
script should look like the top of Figure 14. Set the kicker’s script to fire
on mouseDown and the falling object’s script to fire on ticking, and you
should have a working simulation of a falling object that you can kick.

Figure 14: The Final Scripts

You can save these morphs and share them with others as-is. Control-
click on any of the morphs and choose Save morph in file. You can name
the file, and its file extension will be “.morph”. You can send this file to
others (via email or even on the Web). Others can load it back in to their
image. From the file list, when you select a morph file, your yellow button
menu will let you file in the morph and recreate it—scripts and all.

The references between objects may get messed up in this process.
For example, the kicker’s script will probably need to remapped to the
falling object. That’s what the Make A Tile halo (just under the Viewer
halo) is good for. Simply make a tile and drag it into each of the “Ellipse”
tiles in the kicker’s script.

Exercises: Improving the Viewer Falling Object
9. Should the kick script belong to the kicker or the falling object? We
currently have it as the kicker, but maybe the falling object should figure
out how it should fall, and the kicker should just tell the falling object to
fall. Rebuild the system that way.

10. Our velocity is really the vertical velocity. Add horizontal velocity to
the object. Create a launcher that fires out the falling object at a given
vertical and horizontal velocity. If you do it right, the object should fall in
an arc. (Remember why from your physics?)

11. Remembering your physics, figure out how you need to set things up,
without changing the kicker, such that kicking the object stops it dead.

9

This is a Chapter Title

12. How would you make the falling object fall up, that is, fall as if the
gravitation pull was from the top of the screen rather than the bottom?
(Hint: The gravity’s impact in our simplistic simulation is through the
acceleration on the object.)

13. Brainstorm a bit over class-based versus prototype-based object
systems. When is one an advantage over the other? Consider at least these
two scenarios: (1) When prototyping a new object and (2) when
maintaining objects that were designed five years ago.

1.2 Programming Basic Variables and Events of Morphs
The previous section gave you a sense of how easy it can be to manipulate
morphs. For working through how you want your interface to work, this is
a great process. You can quickly assemble a morph that you want, and
even test out functionality. However, it gets hard to make many of them,
or to create abstractions over them (e.g., subclasses, abstract classes), or to
control things like connections between objects. Also, the Viewer system
doesn’t yet provide all the tools of the text-based programming, such as a
debugger.

Typically, you still want to use text to build your more complex
systems. The transition between the tiling world and the scripting world
isn’t as complex as you might think. If you click on the script1 tile, you
get a pop-up menu that allows you to view your script textually (Figure
15). This provides you the opportunity to see what the mapping is from the
Viewer system into the text world.

Figure 15: Viewing a Tile Script as Text

But the text world is clearly more complicated than the tile world. We
need to know some more things about Morphic in order to dig into
programming there. This section introduces the key instance variables,
events, and methods needed to program in Morphic.

10

This is a Chapter Title

1.2.1 Instance Variables and Properties
The below table summarizes the main instance variables that are common
to every morph. Each of these can be set and accessed using the normal
Smalltalk conventions. The bounds is accessed using the bounds
method and set using the bounds: method. One of the interesting thing
about Morphic is that any change is immediately apparent in the system.
Changing the bounds makes the morph change its size immediately. You
don’t have to do any kind of refresh to make it happen.

Instance variable Meaning

bounds The rectangle defining the shape of this
morph. Change the bounds to resize or
move the morph. (fullBounds is the
bounds of the morph and all of its
submorphs. They’re most often the
same.)

owner The containing morph. It’s nil for the
World, but is otherwise the morph in
which self is embedded.

submorphs The morphs inside me, typically changed
with addMorph:

color The main color of the morph.

name Morphs can be named, and that’s what
shows up at the bottom of the halows
when you Morphic-select an object.

The last instance variable, name, is a bit of a trick. Yes, you can use
name: on any morph, but if you look at the definition of the class Morph,
you won’t find name there. Instead, there is another instance variable
named extension that refers to an instance of MorphExtension, and it
is the MorphExtension that knows how to be named.

What’s going on here is a cost savings technique. Every object on the
screen in Morphic is a morph. Morphs must therefore be cheap to have
around. Thus, extra things like name (not every morph needs a name) are
extensions. If you set the name of a morph, it will check to see if it has an
extension, and create one if it doesn’t (see the Morph method
assureExtension), then set the name in the extension. The name
accessor asks the extension for the name. This is an example of the
delegation introduced in Chapter 2.

MorphExtension provides many other instance variables, some of
which are:

11

This is a Chapter Title

Instance variable Meaning

balloonText,
balloonTextSelector

Any morph can do self extension
balloonText: ‘This is all about me…’
and will set the balloon help for
themselves. A morph can also set its
balloonTextSelector which will be
used to access balloon text dynamically.

visible Determines whether a morph is visible or
not

locked Manipulate with lock and unlock. A
locked morph can’t even be selected.

sticky A sticky morph can’t be moved. Change it
with toggleStickiness.

There are other interesting instance variables in MorphExtension,
but these are the most critical, save one: otherProperties. There is built-
in space for additional properties in MorphExtension, without having to
add additional instance variables.

otherProperties is a Dictionary. You can add properties with
setProperty:toValue: and retrieve them with valueOfProperty: and
ask if a property were there with hasProperty:. The name of a property
is typically a symbol, and the value can be anything you want. The
properties won’t be as fast to access as an instance variable, but this allows
for great expandability without ever changing the basic structure of
MorphExtension instances.

1.2.2 Morphic Events
Programming user interfaces in Morphic is much easier than under the
MVC window model. Conceptually, the complicated controller part is
built into the toolkit. A handful of predefined user interface events are
passed on to morphs that want them. The basic model is that a morph is
asked if it would like to handle a particular kind of event, and if so, the
event is sent by calling a predefined method in your morph. (Morph, of
course, defines all of these and will catch them if your subclass doesn’t
override them.)

The object passed around is a MorphicEvent. A MorphicEvent
understands many of the same things as Sensor, but encapsulates the
event into an object. You don’t poll MorphicEvent the way that you do
Sensor. Instead, you can ask a MorphicEvent whether
redButtonPressed is true if it’s a mouse event (isMouse would

12

This is a Chapter Title

return true), or you can ask the MorphicEvent what the keyCharacter
is (if isKeystroke is true).

The below table summarizes how to handle the most common kinds
of events.

Event you want your
morph to handle

How to handle it

MouseDown Have a method handlesMouseDown:
which takes a MorphicEvent as input,
and return true.

Have a method named mouseDown:
which takes a MorphicEvent, and deal
with the mouse down as you wish.

MouseUp and MouseOver
(mouse passes over the
object)

Similarly, have a handlesMouseUp: or
handlesMouseOver: method, then a
mouseUp: and mouseOver: method.

MouseEnter and
MouseLeave

Return true for handlesMouseOver:,
then define mouseEnter: and
mouseLeave:

MouseMove (within the
morph)

Return true for handlesMouseDown:
then implement mouseMove:

Key Strokes When your morph should capture
keystrokes, return true for hasFocus,
then accept events in keyStroke: When
the focus is changing, your morph will be
sent keyboardFocusChange:, true for
receiving and false for losing.

There are more subtleties to the Morphic event handling model. For
example, if a morph’s extension defines an eventHandler, then your
events can be delegated to the object referenced by the eventHandler.
There are also events associated with mouse clicks starting text entry or
not, accepting drag-and-drop, and catching whether the mouse is already
carrying an object when it enters the bounds of the morph. More details on
these can be found in the event handling category of Morph instance
methods, but the above are the most common cases.

1.2.3 Animation
One of the most interesting things about Morphic is that it makes animated
user interfaces very easy to build. To make your morph animate, you need

13

This is a Chapter Title

to implement just one method, step, and optionally one other method,
stepTime.

• At regular intervals, the method step is called on all morphs. In your
morphs’ step methods, you can change the appearance, update the
display, poll a model to ask for its current values, or do whatever else
you’d like.

• The default step interval is once a second. stepTime can return a
different value, which is the number of milliseconds between each
time you want step to be called.

An easy-to-understand example of using step and stepTime is the
ClockMorph. The ClockMorph is a subclass of StringMorph, and all
it does is display the time. The stepTime method simply returns
1000—the clock updates once a second (1000 milliseconds). The step
method simply sets the contents of the string (self) to the current time.
That’s all that’s needed to create an updating string with the time.

1.2.4 Custom menus
There is a custom menu associated with each morph, available from the
control-click menu and from the red halo menu. You can easily add
morph-specific items to this menu, by overriding the method
addCustomMenuItems: aCustomMenu hand: aHandMorph. This
method is called whenever the menu is requested by the user (via control-
click or red-halo click). Simply use add:action:, add:target:action:,
and addLine methods to add additional items to the menu being handed
to the method.

Most of the time, you will want to allow your morph’s superclass a
chance to add its menu items, via super addCustomMenuItems:
aCustomMenu hand: aHandMorph. But if you’d like to limit the
menu items that a user sees, you don’t need to call the superclass. The
menu will still have many generic Morph items in it, though.

For an example menu customization, ImageMorphs provide user-
accessible manipulations through this method.

addCustomMenuItems: aCustomMenu hand: aHandMorph

super addCustomMenuItems: aCustomMenu hand: aHandMorph.

aCustomMenu add: 'choose new graphic...' target: self action:
#chooseNewGraphic.

aCustomMenu add: 'read from file' action: #readFromFile.

aCustomMenu add: 'grab from screen' action: #grabFromScreen.

14

This is a Chapter Title

1.2.5 Structure of Morphic
The Morphic world may be clearer if some of the internal structure is
described. It’s important to realize that, just as everything in Squeak is an
object, everything in Morphic is a morph (i.e., an instance of a subclass of
Morph). This includes the desktop itself and even the cursor.

The desktop itself, the World, is an instance of the class
PasteUpMorph. There are many PasteUpMorphs around. The
Standard Parts Bin and the flaps are also PasteUpMorphs.
PasteUpMorphs are general “playfields” (as some of them are named)
which can hold other morphs.

The World PasteUpMorph does something very important: It runs
doOneCycleNow repeatedly. This method updates the cursors,
processes user interface events for the given cursor, runs step methods,
and updates the display. The method doOneCycleNow appears below:

doOneCycleNow

"Do one cycle of the interactive loop. This method is called repeatedly
when the world is running."

"process user input events"

self handsDo: [:h |

self activeHand: h.

h processEvents.

self activeHand: nil].

self runStepMethods.

self displayWorldSafely.

StillAlive ← true.

Notice that the above paragraph (and above code) make it clear that
events are handled for each cursor. A Morphic world can have multiple
cursors at once. Each is an instance of HandMorph. It is HandMorph
that sends the events to morphs. Because of this implementation, it is
possible to have multiple users interacting in the same Morphic world.
There is an option under the Help menu from the World Menu called
Telemorphic which lets you connect multiple users to the same image each
with their own cursor.

The HandMorph provides many core behaviors to Morphic. As can
be seen in the above code, it’s the processEvents method in
HandMorph which deals with sending the appropriate messages to the
appropriate morphs when user input comes in. It’s also the HandMorph

15

This is a Chapter Title

which creates the control-click menu, in the method
buildMorphMenuFor:. The HandMorph puts up the halos, builds the
halo menus, and even builds the World Menu. So, if you want to change
the halos or core menus of the system, you start by modifying or
subclassing HandMorph.

The process of displaying the world safely (displayWorldSafely)
leads to asking each submorph of the world to drawOn: the world’s
Canvas. The drawOn: method is the hook for creating your own look to
Morphs, if you want something different than a composition or slight
modification to the base morphs. drawOn: takes a Canvas object as its
argument. An instance of Canvas knows how to draw basic objects (like
rectangles and ovals) as well as draw arbitrary Forms.

1.3 Programming A Morphic Falling Object
Let’s re-do the falling object simulation, but this time, from textual
Squeak. The idea is to create the same kind of interaction as the Viewer
version, but using the Morphic programming structure described in
Section 1.2. By creating a textual version, we have objects that we can
later build upon in other contexts. This code is on the CD as
programmedFall.cs.

We won’t go through a CRC Card analysis here, because we already
know what basic objects we want. We need a kicker and a falling object.
We will shift responsibilities a bit from the Viewer version: It’s the falling
object that knows how to be kicked. The kicker just tells the falling object
to kick.

Because the textual version will not have the code as accessible as the
Viewer version, we’ll need to add some user interface to do the kind of
exploration that a user might want to do. Probably the most common
manipulation will be to change the gravitational acceleration constant. In
terms of responsibility, it seems natural to let the falling object hold a
menu item for allowing the user to change the gravitational constant. But
given that our falling object will be moving constantly, it’s easier on the
user to stick it in the kicker.

Just to make the falling object a little more interesting, we’ll create it
as a subclass of ImageMorph. An ImageMorph can hold any kind of Form,
which means that we can have any kind of falling object we may wish.
Think about what kind of images you might want to have crashing on your
screen, with a clear user interface for kicking those objects.

A UML diagram of our classes appears in Figure 16. We’ll create a
KickButtonMorph as our kick button, and a FallingImageMorph as
our falling object. The KickButtonMorph will keep track of the ball
that it kicks. It will have hooks into the user interface, for the gravity-

16

This is a Chapter Title

setting menu item (addCustomMenuItems:hand:) and for capturing
button clicks (mouseDown:). The FallingImageMorph will keep track
of its gravity (more correctly, the constant acceleration due to gravity)
and velocity, provide setters and getters for these, and implement a kick
method. It will have a step method where it will implement falling.

Figure 16: UML Diagram for Textual Falling Object Simulation

We can now begin implementing our classes with some class
definitions. While we said that the falling object would be a subclass of
ImageMorph, we didn’t talk yet about what the kicker would be
subclassed from. A good solution is to do in code just what we did via
direct manipulation of the morphs: We’ll start from a RectangleMorph.
We’ll override initialize so that our KickButtonMorph gets the label
that we want.

Notice that there is a SimpleButtonMorph that would make sense
to subclass from. Similarly, there are many button subclasses that would
be useful to explore and subclass. However, they make it too easy—if we
used one of those, we would never deal with mouseDown or setting our
own label. We would only provide an action method. While that’s what
you’ll do in normal practice, we’ll unpack the details a bit here to show
better how the button is constructed.

ImageMorph subclass: #FallingImageMorph

instanceVariableNames: 'velocity gravity '

classVariableNames: ''

poolDictionaries: ''

category: 'Morphic-Demo'

RectangleMorph subclass: #KickButtonMorph

instanceVariableNames: 'ball '

classVariableNames: ''

17

This is a Chapter Title

poolDictionaries: ''

category: 'Morphic-Demo'

1.3.1 Implementing the Falling Object
Let’s start out by implementing the basic falling procedure. We know
what this looks like from our Viewer implementation, and we know from
our discussion of Morphic animation that we fall in a step method.
Falling is a process of incrementing the velocity by the acceleration due to
gravity, and then moving the object down by the amount of its velocity.

step

velocity ← velocity + gravity. "Increase velocity by gravitational constant"

self bounds: (self bounds translateBy: (0@(velocity))).

As mentioned earlier, the position and size of a morph is determined
by its bounds. If we move the bounds, we move the object. The
bounds is a Rectangle. To move a rectangle is to translate it, and the
method translateBy: handles the translation. The amount of translation is
a Point: The amount of horizontal translation and the amount of vertical
translation. To move an object down, then, we translate it by 0 @
velocity.

We don’t want the step to happen too often, so we’ll provide a
stepTime method. We’ll use one second as the step interval, so that our
velocity is in the simple units of pixels per second, and our gravity
constant is pixels per second per second.

stepTime

"Amount of time in milliseconds between steps"

^1000

Next, we need the ability to kick the object. Kicking, as we defined it
earlier, sets the velocity back to zero and moves the object back up 100
pixels. Again, this is a translation, where the vertical coordinate is
negative because it’s a move up.

kick

velocity ← 0. "Set velocity to zero"

self bounds: (self bounds translateBy: (0@(100 negated))).

Finally, let’s provide an initialize method that sets the velocity and
acceleration to a reasonable state.

initialize

super initialize. "Do normal image."

velocity ← 0. "Start out not falling."

18

This is a Chapter Title

gravity ← 1. "Acceleration due to gravity."

We will need methods for getting and setting the gravity, if not the
velocity, too. Those are left as an exercise for the reader.

1.3.2 Implementing the Kicker
The main requirement for the kicker is that it be able to kick an object, so
let’s begin with that. We’ll trigger the kicking action on mouse down,
which means that we have to announce that our morph will handle mouse
down, then provide a mouseDown: method.

handlesMouseDown: evt

"Yes, handle mouse down"

^true

mouseDown: evt

self kick.

Kicking is pretty easy when the kicked object implements the kicking.

kick

ball kick.

That’s enough to allow for kicking. We’ll need an ability to set the
ball to be kicked (ball:), but that’s actually enough to start our simulation.
However, if we created our objects right now, our kicker would only be a
raw rectangle without a label. If we want to have a different look, we
should override the initialize method.

The initialize method first does whatever rectangles do for
initialization, then sets up a label. Our label will be a string (StringMorph)
saying “Kick the Ball.” StringMorph’s know their size (extent), so we’ll
set the kicker’s extent to match it. Then we’ll add the string into the
rectangle, and place the center of the button wherever the mouse is.

initialize

| myLabel |

super initialize. "It's a normal rectangle plus..."

myLabel ← StringMorph new initialize.

myLabel contents: 'KickTheBall'.

self extent: (myLabel extent). "Make the rectangle big enough for the
label"

self addMorph: myLabel.

self center: (Sensor mousePoint). "Put it wherever the mouse is."

19

This is a Chapter Title

1.3.3 Running the Text Falling Simulation
In a workspace, we can now run our simulation. We need to create each
object, initialize it, and open it in the world. We need to tell the kicker
what its ball is. We’ll set the form for the falling object to be selected by
the user, so when you execute the below code, you’ll have to click and
drag a rectangle of interesting display before it’ll run. (Feel free to replace
that with a form of your own choosing.)

aBall ← FallingImageMorph new initialize.

aBall newForm: (Form fromUser). “Here’s where you select a form”

aKicker ← KickButtonMorph new initialize.

aKicker ball: aBall.

aBall openInWorld.

aKicker openInWorld.

With this, you can bounce the ball around (Figure 17). (Though, it
probably doesn’t look like a ball, unless you selected one.) However, all
you can do is bounce the ball here—not much more exploration than that.

Figure 17: FallingImageMorph and KickButtonMorph

1.3.4 Changing the Gravitational Constant
As seen in our original design, we plan to make a menu item available

for changing the gravitational constant for the falling object. We can do
that pretty easily. First, we add it to the control-click menu.

addCustomMenuItems: aCustomMenu hand: aHandMorph

super addCustomMenuItems: aCustomMenu hand: aHandMorph. "Do
normal stuff"

aCustomMenu add: 'set gravity' action: #setGravity.

20

This is a Chapter Title

Then, we provide a method for setting the gravity. Setting the gravity
will use a FillInTheBlank to let the user know what the current gravity is
and to input a new gravity. The gravity is a number, but FillInTheBlank
accepts an initial answer and returns a string, so we need to convert.

setGravity

"Set the gravity of the ball"

| newGravity |

newGravity ← FillInTheBlank request: 'New gravity'

initialAnswer: ball gravity printString.

ball gravity: (newGravity asNumber).

Now, try control-clicking on the kicker and changing the gravity for
the falling object.

