Objects as Capabilities in
Sgueak

Lex Spoon

1. Overview

In order to widely share Squeak pages across the Internet, it will be necessary to
engineer a safe display environment--a sandbox--for such pages. Specifically, once a
page (graph of objects) is loaded and a process instantiated to administer the page’s
active aspects, it is desirable to restrict that process both from invoking harmful
operations, and from corrupting the greater Squeak image that the page has been loaded
into. This document describes a project to implement such restrictions without stopping
normal morphic interactions.

A fundamental perspective in this project is to view each object reference as a

capability. That is, an object reference provides a limited list of operations on a specific
resource-- the operations are the object’s defined methods, and the resource is whatever
resource the object refers to. Under this perspective, security policies may be
implemented by carefully analyzing the initial set of objects provided to a process, and
the mechanisms by which more objects may be maintained and modified. If a process
begins with a set of objects that are considered safe, and those objects provide no way
to obtain an object that is unsafe, then that process has been successfully restricted.

Overall, this project does not completely implement a sandbox for viewing Squeak
pages. However, it does provide a good basis. This document describes the mechanisms
that have been put in place, and it describes some design approaches for working with
these mechanisms.

Objects as Capabilities in Squeak

2. The Objectinspector Capability

Objectinspector is a powerful capability that enables many of the mechanisms
described below. Briefly, Objectinspector allows inspecting objects, even when those
objects don’t define methods such as #class or #instVarAt:. The full list of messages
that Objectinspector defines is:

1. classOf:

2.instVarOf:at:

3.instVarOf:at:put:

4. elementOf:at:

5. elementOf.at:put:

6. replaceln:from:to:startingAt:

7. digitOf:at:

8. digitOf:at:put:
Objectinspector reuses existing primitives in its implementation. For example,
#classOf: uses the same primitive as the regular #class method. For this reuse to work,

it is necessary to make small changes to the implementation of those primitives in the
interpreter.

3. Modifications to the Language

As is, Squeak has several mechanisms that let a process break most security policies,
even if that process is given an extremely innocuous set of initial object references.
This section describes how these mechanisms are adjusted in order to make security
enforcement practical.

Objects as Capabilities in Squeak

3.1. Literals

By default, literals refer to shared instances. If a method operates on a literal such as
'hello, world’, then every invocation of that method will refer to the same literal. The
security issue is that a restricted process may modify a literal, and those modifications
can influence an unrestricted process. At the least, outside processes can be made to act
in strange ways -- for instance, browser windows might be labelled "Happy Hippos"
instead of "System Browser". More seriously, array literals can have their elements
replaced by arbitrary objects, ultimately leading to arbitrary behavior when an
unrestricted thread sends a message to one of those objects.

To prevent these possibilities, this project makes all literals immutaptebol ,
Character , Float , andScaledDecimal are modified to be immutable, while
Array , andString , LargePositivelnteger , andLargeNegativelnteger each
are given a read-only variarReadOnlyArray , ReadOnlyString , and so on. (Note
that aReadOnlyString is not identical to a symbol: when sent #copy, a
ReadOnlyString returns an equal String, whilesymbol returns the receiver).

One complication is the initialization of read-only literals: how does an immutable
object get its first value? In most cases, Objectinspector is used to initialize the object.
The sole exception iScaledDecimal , where the only initialization method is

modified to falil if called on an already-initialized object.

3.2. Dynamic Variables

Global, pool, and class variables might collectively be called "pool" variables. In
standard Squeak, all pool variables are statically bound with a single, system-wide
binding, causing a difficulty for security: modifications to the variable or to the object it
references will be seen and acted on by other processes in the image. Unless care is
taken for each such variable, a restricted process will often be able to trick an
unrestricted process into doing something on its behalf.

This project gives each process its own set of pool variable bindings. Those bindings
may be shared with other threads if desired, but most importantly, it is possible to give
a process completely unique bindings. When such a restricted process accesses

Objects as Capabilities in Squeak

"World", it will be accessing a different variable binding than an unrestricted process
which accesses "World". If a restricted process executes "World := nil", then that
restricted process will be only causing itself difficulties; the rest of the system will be
see the same World as if the unrestricted process were not even running.

Incidentally, methods that are marked as privileged, are still be able to access variables
through a static binding. If a variable access is preceded by an exclamation mark, then
the standard system binding will be used. For example, "'World := nil" can be used to
destroy the world even if the current process has a restricted island installed.

The implementation of dynamic variables works as follows. First, each process is given
a current runtime context, called an "island" in the prototype. Second, the compiler is
modified so that pool variable references are implemented as message sends to the
current island. Finally, to aid performance, a simple cache is added at each variable
access in a method; with this cache, a full lookup of a variable binding can often be
avoided.

3.3. Privileged Methods

There are several structures that Squeak normally allows methods to define, but which
allow breaking most restrictive security policies:

- declaring a method as primitive

. statically binding to a pool variable

- accessing thisContext

In this project, the compiler has been modified to disallow each of these mechanisms by
default. System programmers may override this default by marking individual methods

as "privileged"; privileged methods may use the full Smalltalk language. Whenever
code is loaded from untrusted sources, it should be loaded into unprivileged methods.

In order to implement these restrictions, a list of privileged selectors is added to class
ClassDescription . Processes with direct access to classes are able to add and

Objects as Capabilities in Squeak

remove selectors to these lists. The compiler is modified to check this list after it has
processed a method’s header, and depending on whether the method’s selector is in the
list or not, it will or will not allow the method to contain privileged operations.

3.4. Restricting Blocks

Blocks are an important part of Smalltalk code, but current Squeak blocks are more
powerful than they need to be. For example, access to a block allows a programmer to
modify the bytecodes of the compiled method the block was defined in.

This sandbox scheme modifies the compiler to gené&ta¢eictedBlock 's instead
of regularBlockContext ’'s. A RestrictedBlock allows safe messages like #value
and #value:, but does not allow messages like #home:startpaajgstinspector

may be used to extract the underlyiBigckContext from aRestrictedBlock as
follows: (realBlock := Objectinspector realBlockFor: aRestrictedBlock).

3.5. Making Classes Safe

Direct access to classes allows a number of attacks. The class hierarchy might be made
cyclical. The method dictionary might be replaced by an integer. More deviously, new
methods might be installed into a class which do not obey the usual security
restrictions. Class objects must be restricted in some way; on the other hand, it is quite
common for Smalltalk code to access classes, and existing code should be allowed to
work as far as is reasonable.

The general approach in this project is to intercept all accesses to classes, and to only
allow safe operations to be applied to them. In particular, the following two access
routes are modified for restricted processes:

1. Global variables referring to classes now refer to restricted proxies to classes

2. The #class method returns a restricted class when invoked in a restricted process

Objects as Capabilities in Squeak

Deciding how a restricted class should behave has been "interesting”. The current
implementation allows the following methods to be executed on a restricted class:

« A small hand-chosen list of methods including #basicNew and #name

- Methods that aren’t marked "privileged" and that don’t access class instance
variables

The general goal is to allow both instantiation methods and utility methods. An
additional nicety is that the above requirements may be checked quite quickly.

In addition to deciding what methods are reasonable, it is also "interesting" to decide
how those methods should be executed. In particular, many class methods return "self",
but "self" in this case would normally be a direct reference to a class. Allowing such
methods to be executed as normal would allow a restricted process to gain direct access
to a class. The solution implemented in this project is to implement class methods so
that "self" refers to the restricted class proxy, and not the class itself. The method
#valueWithReceiver:withArguments: handles most of the work required.

One remaining difficulty is supered message sends. Supered message sends are looked
up starting in class other than the default. Normally in Squeak, the interpreter decides
which class to use by looking at the last literal defined in the method. One simple
implementation would be to add a parameter to valueWithReceiver:withArguments:
which overrides whatever value is in the method header. This implementation requires
tricky interpreter changes, however, and so this project instead includes some
image-level trickery to achieve the same result.

To make supered message sends work, whenever a class proxy is about to invoke a
method that includes supered sends, it copies the method and specifies in the new
method that a new, specially created class should be used for supered message lookups.
This special class only implements #doesNotUnderstand:, and it implements it with the
same method thaestrictedClass does. Finally, the special class contains an

instance variable referring to the class where the real lookup should occur, so that
#doesNotUnderstand: can find the correct implementation.

Overall, implementing class proxies is one of the trickiest part of this system. The
primary problem is that classes are a place where Smalltalk mixes language

Objects as Capabilities in Squeak

implementation and regular user code, and so trickery is required to allow access one of
these aspects but not the other.

3.6. Moving Primitives from Base Classes

The current system defines a number of primitives in base classes like Object, which
shouldn’t be available to untrusted code. Such primitives should be moved to external
capabilities.

An incomplete list of such methods is the following:

- someObject and nextObject. These allow iterating through all objects in the system
and thus clearly break confinment. They are moved to @gs&embDictionary
and #allObjectsDo: is modified to use the new locations.

- instVarAt: and instVarAt:put:. These can remain except for proxies, but in proxies
they must definitely be removed. These methods are made available in class
Objectlnspector

- become.:. First, the existing implementation can cause image crashes, and second, it
is difficult to allow become: between objects in a sandbox but still to prevent
become: between a sandboxed object and a proxy. Well-written Smalltalk rarely
needs this facility, however, so leaving it out shouldn’t be too much of a burden.

4. Restricted Access to Common Resources

This project modifies several common resources so that a restricted process may be
given limited access to them. The usual technique is to remove power from primitives
directly implemented on an object, and instead to add a global variable with that power.
In a restricted process, the global can be replaced and thus security-critical requests can
be intercepted.

Objects as Capabilities in Squeak

4.1. Characters and Symbols

The Squeak implementations ©haracter 's andSymbol 's rely on class variables to
ensure the uniqueness of equal instances. For example, there should be only one
character in the system with ASCII value 65. These class variables must be shared
across an entire Squeak image to achieve their purpose, but they must also be protected
from corruption by untrusted code. For each class, these dual goals are achieved in a
different way.

ForCharacter s, the state in the class variables is moved to a globally accessible
object named StandardCharacterRepository. This object can be easily checked to be
safe against malicious access, because it is so simple.

For Symbol ’s, the shared state is protected in a different way, largely due to lack of the
implementor’s time. First, a mutex is created which is held during all accesses to the
shared state. Second, all methods which access the mutex or the other shared variables
are reviewed.

4.2. Mouse Cursors

Currently, clas€ursor directly implements methods #beCursor and
#beCursorWithMask: as primitives. Thus any code which accesSasar may
immediately install it system-wide.

To address this, the ability to install a cursor is removed from cursors themselves and
located in a global object named Cursorinstaller. In unrestricted processes,
Cursorlinstaller responds to #installCursor: and #installCursor:withMask: with
primitives. In restricted processes, Cursorinstaller will typically be a proxy. This proxy
might or might not immediately install the cursor as requested, depending on the
precise security policy that is being implemented.

4.3. Semaphores and Delays

Semaphore 's andDelay s both have a complex structure and a simple interface. Both

Objects as Capabilities in Squeak

access processes explicitly, and might allow for mischief if untrusted code can access
them directly. Thus it is natural to arrange that all accesses go through a restricted
proxy. The proxy classes are restricted and reviewed as normal. To ensure that only
restricted proxies may be accessed, the globals Semaphore and Delay are adjusted in
restricted processes. Instead of referring to classes, these variables refer to special
objects that implement methods like #forSeconds: and #forMutualExclusion to return
safe proxies.

4.4. Exceptions

Properly executed exceptions do not cause any security troubles, as they merely
rearrange control flow. However, exception objects provide numerous possible ways to
subvert the system. Probably, exceptions should have been proxied the way blocks,
semaphores, and delays are, but time has been too short to guard exceptions very well.

Nevertheless, all of the most obvious holes with exceptions have been closed. For
example, the #initialize: method is removed, as is #receiver. Furthermore, the method
to find the handler context when an exception occurs, is moved to a privileged class
method and thus is no longer accessible to restricted processes.

5. Guidelines for Implementing Restricted
Proxies

Most security-critical objects written in this project are restricted proxies to a more
powerful object. These objects allow partial access to an underlying resource. Most
likely more of these will be written in the future, and so this section tries to give some
suggestions on how to implement them in a reliable way.

There are two important properties that such a restricted proxy must hold. First, a proxy
must limit access to the underlying resource as is appropriate for the particular
proxy--for example, a proxy onEileDirectory might allow only accessing files in

Objects as Capabilities in Squeak

10

one patrticular directory but not in others. This kind of restriction is specific to the
resource being defined, and will not be further addressed in this section.

Second, a proxy must carefully guard the object references that it returns from its
methods. It must neither transfer a powerful object to the restricted side, nor transfer an
arbitrary restricted object to a place where an unrestricted process might act on it.
There are two basic elements to this restriction.

First, certain primitives normally inherited from clagbject must be overridden and
disabled for proxy classes. In particular, the following primitives should be disabled:

- instVarAt: and instVarAt:put:, because they allow directly breaking confinement

- at:, basicAt:, at:put:, and basicAt:put:, if the proxy has indexed fields, because they
would allow directly breaking confinement

Additionally, #shallowCopy and #clone make revocation much more difficult; thus,
they should most likely be overridden to return the receiver instead of returning a true

copy.

Note that all non-primitive methods from cla®bject may be safely left accessible.

Since such code must consist of message sends between parameters, self, and globals,
user code could emulate the code even it it were disabled, and so disabling such
methods gives no gain in security.

The second element is that, for each method that is privileged or which accesses
instance variables, the inputs and return values of the method must be scrutinized. The
return value of a method must not be an object reference which might have come from
one sandbox or the other. The argument to any parameter sent to an instance variable or
a parameter, must again not be a reference which might have come from one side or the
other.

For input parameters, the simplest approach is to always filter them through one of
several new safeXFor: methods. These methods simultaneously check the type of an
object, and return a newly allocated copy of the object. These methods may also be
used to copy return values; while return values don't need to be type-checked, they do
need to be new objects.

Objects as Capabilities in Squeak

An exception to this policy is that references to certain immutable objects may be
passed freely from one space to another. In particular, characters, symbols, and small
integers may be safely shared. Such objects do not allow further interaction between
spaces, and they do not have problems when accessed from multiple threads.

6. Denial of Service

In addition to attacks that delete files or munge the screen, there are denial of service
attacks which are irritating if not as damaging. In particular, a loaded project might run
continually and hog the CPU, or it might allocate objects endlessly and thus steal
memory from the rest of the system.

The problem of hogging CPU is easily addressed by running sandbox-ed threads at a
lower priority than threads in the foreground. This problem is not addressed further.

The problem of stealing memory is more difficult. No solution has been implemented
in this project, but here are some ideas towards a solution.

In some fashion, the amount of memory that a sandbox may use at one time needs to be
limited. Garbage collection makes this more difficult: it isn’t reasonable to put a limit

on the amount of memory allocated, but instead, the limit should be on the total amount
of memory allocated at one time.

The most straightforward solution seems to be to have separate object memories, and to
force a sandbox to allocate from a particular memory separate from the main system’s
memory. Then, a project can only run its own memory out of objects, and can't steal
memory from the main system.

There are multiple ways to implement separate memories, but perhaps the simplest is to
add a notion of submemories. A submemory is a special kind of object that itself
contains other objects. The garbage collector would need to be updated to recurse into
submemories, and the allocator needs to take a parameter which is the submemory to
use. A primary advantage of the submemories approach is that there is no need to add a
special kind of cross-memory oop; regular oops will continue to work as they are. A
second advantage is that the mechanism works on all platforms: there is no need to

11

Objects as Capabilities in Squeak

allocate new memory as Squeak runs. While | am far from an expert on object
memories, submemories seem like a reasonable and simple design.

12

